Suppr超能文献

放线菌中非核糖体肽和聚酮化合物生物合成的蛋白质组学研究。

A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria.

机构信息

Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States.

出版信息

J Proteome Res. 2012 Jan 1;11(1):85-94. doi: 10.1021/pr2009115. Epub 2011 Oct 25.

Abstract

Actinobacteria such as streptomycetes are renowned for their ability to produce bioactive natural products including nonribosomal peptides (NRPs) and polyketides (PKs). The advent of genome sequencing has revealed an even larger genetic repertoire for secondary metabolism with most of the small molecule products of these gene clusters still unknown. Here, we employed a "protein-first" method called PrISM (Proteomic Investigation of Secondary Metabolism) to screen 26 unsequenced actinomycetes using mass spectrometry-based proteomics for the targeted detection of expressed nonribosomal peptide synthetases or polyketide synthases. Improvements to the original PrISM screening approach (Nat. Biotechnol. 2009, 27, 951-956), for example, improved de novo peptide sequencing, have enabled the discovery of 10 NRPS/PKS gene clusters from 6 strains. Taking advantage of the concurrence of biosynthetic enzymes and the secondary metabolites they generate, two natural products were associated with their previously "orphan" gene clusters. This work has demonstrated the feasibility of a proteomics-based strategy for use in screening for NRP/PK production in actinomycetes (often >8 Mbp, high GC genomes) versus the bacilli (2-4 Mbp genomes) used previously.

摘要

放线菌(如链霉菌)以产生生物活性天然产物而闻名,包括非核糖体肽(NRPs)和聚酮(PKs)。基因组测序的出现揭示了更大的次级代谢遗传组成,这些基因簇的大多数小分子产物仍然未知。在这里,我们采用了一种称为 PrISM(基于蛋白质的次级代谢物研究)的“以蛋白质为优先”的方法,使用基于质谱的蛋白质组学筛选 26 种未测序的放线菌,以靶向检测表达的非核糖体肽合酶或聚酮合酶。原始 PrISM 筛选方法的改进(Nat. Biotechnol. 2009, 27, 951-956),例如,改进的从头肽测序,使我们能够从 6 株菌中发现 10 个 NRPS/PKS 基因簇。利用生物合成酶及其产生的次生代谢物的同时存在,两种天然产物与它们以前的“孤儿”基因簇相关联。这项工作证明了基于蛋白质组学的策略在筛选放线菌(通常 >8 Mbp,高 GC 基因组)而非以前使用的芽孢杆菌(2-4 Mbp 基因组)中产生 NRP/PK 的可行性。

相似文献

1
A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria.
J Proteome Res. 2012 Jan 1;11(1):85-94. doi: 10.1021/pr2009115. Epub 2011 Oct 25.
3
Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters in the genus Acrocarpospora.
J Gen Appl Microbiol. 2021 Feb 26;66(6):315-322. doi: 10.2323/jgam.2020.01.001. Epub 2020 Aug 14.
6
Engineering the biosynthesis of fungal nonribosomal peptides.
Nat Prod Rep. 2023 Jan 25;40(1):62-88. doi: 10.1039/d2np00036a.
7
Engineering actinomycetes for biosynthesis of macrolactone polyketides.
Microb Cell Fact. 2019 Aug 13;18(1):137. doi: 10.1186/s12934-019-1184-z.
9
Detection of polyketide synthase and nonribosomal peptide synthetase biosynthetic genes from antimicrobial coral-associated actinomycetes.
Antonie Van Leeuwenhoek. 2014 Oct;106(4):623-35. doi: 10.1007/s10482-014-0233-1. Epub 2014 Sep 5.

引用本文的文献

1
Metaproteomics in the One Health framework for unraveling microbial effectors in microbiomes.
Microbiome. 2025 May 23;13(1):134. doi: 10.1186/s40168-025-02119-5.
2
Inoculum of Endophytic spp. Stimulates Growth of Ex Vitro Acclimatised Apple Plantlets.
Plants (Basel). 2025 Mar 27;14(7):1045. doi: 10.3390/plants14071045.
4
Proteomining-Based Elucidation of Natural Product Biosynthetic Pathways in .
Front Microbiol. 2022 Jul 11;13:913756. doi: 10.3389/fmicb.2022.913756. eCollection 2022.
5
Discovery and Heterologous Production of New Cyclic Depsibosamycins.
Microorganisms. 2021 Jun 28;9(7):1396. doi: 10.3390/microorganisms9071396.
6
Mining for Microbial Gems: Integrating Proteomics in the Postgenomic Natural Product Discovery Pipeline.
Proteomics. 2018 Sep;18(18):e1700332. doi: 10.1002/pmic.201700332. Epub 2018 Jun 10.
7
Intertwined Precursor Supply during Biosynthesis of the Catecholate-Hydroxamate Siderophores Qinichelins in Streptomyces sp. MBT76.
ACS Chem Biol. 2017 Nov 17;12(11):2756-2766. doi: 10.1021/acschembio.7b00597. Epub 2017 Oct 2.
8
Different Bacterial Communities Involved in Peptide Decomposition between Normoxic and Hypoxic Coastal Waters.
Front Microbiol. 2017 Mar 7;8:353. doi: 10.3389/fmicb.2017.00353. eCollection 2017.
10
Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.
Appl Environ Microbiol. 2015 Aug;81(15):5064-72. doi: 10.1128/AEM.00631-15. Epub 2015 May 22.

本文引用的文献

1
Proteomics-based discovery of koranimine, a cyclic imine natural product.
J Am Chem Soc. 2011 May 18;133(19):7316-9. doi: 10.1021/ja2015795. Epub 2011 Apr 26.
3
COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA.
Proteomics. 2011 Mar;11(6):1064-74. doi: 10.1002/pmic.201000616. Epub 2011 Feb 7.
4
Scaffolding pre-assembled contigs using SSPACE.
Bioinformatics. 2011 Feb 15;27(4):578-9. doi: 10.1093/bioinformatics/btq683. Epub 2010 Dec 12.
5
Genome sequence of Kitasatospora setae NBRC 14216T: an evolutionary snapshot of the family Streptomycetaceae.
DNA Res. 2010 Dec;17(6):393-406. doi: 10.1093/dnares/dsq026. Epub 2010 Nov 8.
6
Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11692-7. doi: 10.1073/pnas.1001513107. Epub 2010 Jun 14.
7
Prodigal: prokaryotic gene recognition and translation initiation site identification.
BMC Bioinformatics. 2010 Mar 8;11:119. doi: 10.1186/1471-2105-11-119.
9
De novo assembly of human genomes with massively parallel short read sequencing.
Genome Res. 2010 Feb;20(2):265-72. doi: 10.1101/gr.097261.109. Epub 2009 Dec 17.
10
Genomic basis for natural product biosynthetic diversity in the actinomycetes.
Nat Prod Rep. 2009 Nov;26(11):1362-84. doi: 10.1039/b817069j. Epub 2009 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验