INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France.
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
J Biol Chem. 2011 Dec 2;286(48):41786-41800. doi: 10.1074/jbc.M111.251371. Epub 2011 Oct 6.
In Saccharomyces cerevisiae, proteins with misfolded lumenal, membrane, and cytoplasmic domains are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L, -M, and -C, respectively. ERAD-L is N-glycan-dependent and is characterized by ER mannosidase (Mns1p) and ER mannosidase-like protein (Mnl1p), which generate Man(7)GlcNAc(2) (d1) N-glycans with non-reducing α1,6-mannosyl residues. Glycoproteins bearing this motif bind Yos9p and are dislocated into the cytoplasm and then deglycosylated by peptide N-glycanase (Png1p) to yield free oligosaccharides (fOS). Here, we examined yeast fOS metabolism as a function of cell growth in order to obtain quantitative and mechanistic insights into ERAD. We demonstrate that both Png1p-dependent generation of Man(7-10)GlcNAc(2) fOS and vacuolar α-mannosidase (Ams1p)-dependent fOS demannosylation to yield Man(1)GlcNAc(2) are strikingly up-regulated during post-diauxic growth which occurs when the culture medium is depleted of glucose. Gene deletions in the ams1Δ background revealed that, as anticipated, Mns1p and Mnl1p are required for efficient generation of the Man(7)GlcNAc(2) (d1) fOS, but for the first time, we demonstrate that small amounts of this fOS are generated in an Mnl1p-independent, Mns1p-dependent pathway and that a Man(8)GlcNAc(2) fOS that is known to bind Yos9p is generated in an Mnl1p-dependent, Mns1p-independent manner. This latter observation adds mechanistic insight into a recently described Mnl1p-dependent, Mns1p-independent ERAD pathway. Finally, we show that 50% of fOS generation is independent of ERAD-L, and because our data indicate that ERAD-M and ERAD-C contribute little to fOS levels, other important processes underlie fOS generation in S. cerevisiae.
在酿酒酵母中,具有错误折叠的腔、膜和细胞质结构域的蛋白质分别通过内质网相关降解(ERAD)-L、-M 和 -C 从内质网中清除。ERAD-L 依赖于 N-糖基化,其特征在于内质网甘露糖苷酶(Mns1p)和内质网甘露糖苷酶样蛋白(Mnl1p),它们生成带有非还原α1,6-甘露糖基残基的 Man(7)GlcNAc(2) (d1) N-聚糖。带有这种基序的糖蛋白与 Yos9p 结合,并移位到细胞质中,然后由肽 N-糖基酶(Png1p)去糖基化,生成游离寡糖(fOS)。在这里,我们研究了酵母 fOS 代谢作为细胞生长的函数,以获得对 ERAD 的定量和机制见解。我们证明,Png1p 依赖性生成 Man(7-10)GlcNAc(2) fOS 和液泡α-甘露糖苷酶(Ams1p)依赖性 fOS 脱甘露糖基化生成 Man(1)GlcNAc(2)在培养基耗尽葡萄糖时发生的后需氧生长期间都被显著上调。在 ams1Δ 背景下的基因缺失表明,如预期的那样,Mns1p 和 Mnl1p 是有效生成 Man(7)GlcNAc(2) (d1) fOS 所必需的,但这是第一次证明,这种 fOS 以 Mnl1p 非依赖性、Mns1p 依赖性途径生成,并且已知与 Yos9p 结合的 Man(8)GlcNAc(2) fOS 以 Mnl1p 依赖性、Mns1p 非依赖性方式生成。后一种观察结果为最近描述的 Mnl1p 依赖性、Mns1p 非依赖性 ERAD 途径提供了机制见解。最后,我们表明 50%的 fOS 生成不依赖于 ERAD-L,并且由于我们的数据表明 ERAD-M 和 ERAD-C 对 fOS 水平贡献很小,因此其他重要过程是酿酒酵母 fOS 生成的基础。