Suppr超能文献

酵母细胞内质网相关降解(ERAD)和游离寡糖的生成。

Endoplasmic reticulum-associated degradation (ERAD) and free oligosaccharide generation in Saccharomyces cerevisiae.

机构信息

INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France.

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.

出版信息

J Biol Chem. 2011 Dec 2;286(48):41786-41800. doi: 10.1074/jbc.M111.251371. Epub 2011 Oct 6.

Abstract

In Saccharomyces cerevisiae, proteins with misfolded lumenal, membrane, and cytoplasmic domains are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L, -M, and -C, respectively. ERAD-L is N-glycan-dependent and is characterized by ER mannosidase (Mns1p) and ER mannosidase-like protein (Mnl1p), which generate Man(7)GlcNAc(2) (d1) N-glycans with non-reducing α1,6-mannosyl residues. Glycoproteins bearing this motif bind Yos9p and are dislocated into the cytoplasm and then deglycosylated by peptide N-glycanase (Png1p) to yield free oligosaccharides (fOS). Here, we examined yeast fOS metabolism as a function of cell growth in order to obtain quantitative and mechanistic insights into ERAD. We demonstrate that both Png1p-dependent generation of Man(7-10)GlcNAc(2) fOS and vacuolar α-mannosidase (Ams1p)-dependent fOS demannosylation to yield Man(1)GlcNAc(2) are strikingly up-regulated during post-diauxic growth which occurs when the culture medium is depleted of glucose. Gene deletions in the ams1Δ background revealed that, as anticipated, Mns1p and Mnl1p are required for efficient generation of the Man(7)GlcNAc(2) (d1) fOS, but for the first time, we demonstrate that small amounts of this fOS are generated in an Mnl1p-independent, Mns1p-dependent pathway and that a Man(8)GlcNAc(2) fOS that is known to bind Yos9p is generated in an Mnl1p-dependent, Mns1p-independent manner. This latter observation adds mechanistic insight into a recently described Mnl1p-dependent, Mns1p-independent ERAD pathway. Finally, we show that 50% of fOS generation is independent of ERAD-L, and because our data indicate that ERAD-M and ERAD-C contribute little to fOS levels, other important processes underlie fOS generation in S. cerevisiae.

摘要

在酿酒酵母中,具有错误折叠的腔、膜和细胞质结构域的蛋白质分别通过内质网相关降解(ERAD)-L、-M 和 -C 从内质网中清除。ERAD-L 依赖于 N-糖基化,其特征在于内质网甘露糖苷酶(Mns1p)和内质网甘露糖苷酶样蛋白(Mnl1p),它们生成带有非还原α1,6-甘露糖基残基的 Man(7)GlcNAc(2) (d1) N-聚糖。带有这种基序的糖蛋白与 Yos9p 结合,并移位到细胞质中,然后由肽 N-糖基酶(Png1p)去糖基化,生成游离寡糖(fOS)。在这里,我们研究了酵母 fOS 代谢作为细胞生长的函数,以获得对 ERAD 的定量和机制见解。我们证明,Png1p 依赖性生成 Man(7-10)GlcNAc(2) fOS 和液泡α-甘露糖苷酶(Ams1p)依赖性 fOS 脱甘露糖基化生成 Man(1)GlcNAc(2)在培养基耗尽葡萄糖时发生的后需氧生长期间都被显著上调。在 ams1Δ 背景下的基因缺失表明,如预期的那样,Mns1p 和 Mnl1p 是有效生成 Man(7)GlcNAc(2) (d1) fOS 所必需的,但这是第一次证明,这种 fOS 以 Mnl1p 非依赖性、Mns1p 依赖性途径生成,并且已知与 Yos9p 结合的 Man(8)GlcNAc(2) fOS 以 Mnl1p 依赖性、Mns1p 非依赖性方式生成。后一种观察结果为最近描述的 Mnl1p 依赖性、Mns1p 非依赖性 ERAD 途径提供了机制见解。最后,我们表明 50%的 fOS 生成不依赖于 ERAD-L,并且由于我们的数据表明 ERAD-M 和 ERAD-C 对 fOS 水平贡献很小,因此其他重要过程是酿酒酵母 fOS 生成的基础。

相似文献

1
Endoplasmic reticulum-associated degradation (ERAD) and free oligosaccharide generation in Saccharomyces cerevisiae.
J Biol Chem. 2011 Dec 2;286(48):41786-41800. doi: 10.1074/jbc.M111.251371. Epub 2011 Oct 6.
2
Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae.
J Biol Chem. 2010 Apr 16;285(16):12390-404. doi: 10.1074/jbc.M109.082081. Epub 2010 Feb 11.
7
Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum.
J Cell Biol. 2009 Jan 12;184(1):159-72. doi: 10.1083/jcb.200809198. Epub 2009 Jan 5.
8
A new autophagy-related checkpoint in the degradation of an ERAD-M target.
J Biol Chem. 2011 Apr 1;286(13):11479-91. doi: 10.1074/jbc.M110.177618. Epub 2011 Jan 12.
9
A plant peptide: N-glycanase orthologue facilitates glycoprotein ER-associated degradation in yeast.
Biochim Biophys Acta. 2012 Oct;1820(10):1457-62. doi: 10.1016/j.bbagen.2012.05.009. Epub 2012 May 31.

引用本文的文献

2
The Crucial Role of Demannosylating Asparagine-Linked Glycans in ERADicating Misfolded Glycoproteins in the Endoplasmic Reticulum.
Front Plant Sci. 2021 Jan 12;11:625033. doi: 10.3389/fpls.2020.625033. eCollection 2020.
3
Cryo-EM structure of fission yeast tetrameric α-mannosidase Ams1.
FEBS Open Bio. 2020 Nov;10(11):2437-2451. doi: 10.1002/2211-5463.12988. Epub 2020 Oct 20.
5
Htm1p-Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4015-24. doi: 10.1073/pnas.1608795113. Epub 2016 Jun 28.
8
Travelling-wave ion mobility and negative ion fragmentation of high-mannose N-glycans.
J Mass Spectrom. 2016 Mar;51(3):219-35. doi: 10.1002/jms.3738.
9
Generation and degradation of free asparagine-linked glycans.
Cell Mol Life Sci. 2015 Jul;72(13):2509-33. doi: 10.1007/s00018-015-1881-7. Epub 2015 Mar 14.
10
The endoplasmic reticulum-associated degradation pathways of budding yeast.
Cold Spring Harb Perspect Biol. 2012 Dec 1;4(12):a013193. doi: 10.1101/cshperspect.a013193.

本文引用的文献

1
The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures.
Mol Biol Cell. 2011 Apr;22(7):988-98. doi: 10.1091/mbc.E10-06-0499. Epub 2011 Feb 2.
2
Interplay of substrate retention and export signals in endoplasmic reticulum quality control.
PLoS One. 2010 Nov 24;5(11):e15532. doi: 10.1371/journal.pone.0015532.
6
ERAD substrate recognition in budding yeast.
Semin Cell Dev Biol. 2010 Jul;21(5):533-9. doi: 10.1016/j.semcdb.2010.02.007. Epub 2010 Feb 21.
7
Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae.
J Biol Chem. 2010 Apr 16;285(16):12390-404. doi: 10.1074/jbc.M109.082081. Epub 2010 Feb 11.
8
The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation.
Glycobiology. 2010 Mar;20(3):310-21. doi: 10.1093/glycob/cwp175. Epub 2009 Nov 12.
9
N-glycan structures: recognition and processing in the ER.
Trends Biochem Sci. 2010 Feb;35(2):74-82. doi: 10.1016/j.tibs.2009.10.001. Epub 2009 Oct 21.
10
A Ubc7p-binding domain in Cue1p activates ER-associated protein degradation.
J Cell Sci. 2009 May 1;122(Pt 9):1374-81. doi: 10.1242/jcs.044255. Epub 2009 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验