Suppr超能文献

监测酿酒酵母糖蛋白内质网相关降解的游离寡糖。

Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae.

机构信息

Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.

出版信息

J Biol Chem. 2010 Apr 16;285(16):12390-404. doi: 10.1074/jbc.M109.082081. Epub 2010 Feb 11.

Abstract

In eukaryotic cells, N-glycosylation has been recognized as one of the most common and functionally important co- or post-translational modifications of proteins. "Free" forms of N-glycans accumulate in the cytosol of mammalian cells, but the precise mechanism for their formation and degradation remains unknown. Here, we report a method for the isolation of yeast free oligosaccharides (fOSs) using endo-beta-1,6-glucanase digestion. fOSs were undetectable in cells lacking PNG1, coding the cytoplasmic peptide:N-glycanase gene, suggesting that almost all fOSs were formed from misfolded glycoproteins by Png1p. Structural studies revealed that the most abundant fOS was M8B, which is not recognized well by the endoplasmic reticulum-associated degradation (ERAD)-related lectin, Yos9p. In addition, we provide evidence that some of the ERAD substrates reached the Golgi apparatus prior to retrotranslocation to the cytosol. N-Glycan structures on misfolded glycoproteins in cells lacking the cytosol/vacuole alpha-mannosidase, Ams1p, was still quite diverse, indicating that processing of N-glycans on misfolded glycoproteins was more complex than currently envisaged. Under ER stress, an increase in fOSs was observed, whereas levels of M7C, a key glycan structure recognized by Yos9p, were unchanged. Our method can thus provide valuable information on the molecular mechanism of glycoprotein ERAD in Saccharomyces cerevisiae.

摘要

在真核细胞中,N-糖基化已被认为是蛋白质最常见和最重要的共翻译或翻译后修饰之一。“游离”形式的 N-聚糖在哺乳动物细胞的细胞质中积累,但它们的形成和降解的确切机制仍不清楚。在这里,我们报告了一种使用内切-β-1,6-葡聚糖酶消化分离酵母游离寡糖(fOS)的方法。在缺乏编码细胞质肽:N-聚糖酶基因的 PNG1 的细胞中,fOS 无法检测到,这表明几乎所有的 fOS 都是由 Png1p 从错误折叠的糖蛋白形成的。结构研究表明,最丰富的 fOS 是 M8B,它不能很好地被内质网相关降解(ERAD)相关凝集素 Yos9p 识别。此外,我们提供的证据表明,一些 ERAD 底物在逆行到细胞质之前到达了高尔基体。在缺乏细胞质/液泡α-甘露糖苷酶 Ams1p 的细胞中,错误折叠糖蛋白上的 N-聚糖结构仍然非常多样化,这表明错误折叠糖蛋白上的 N-聚糖的加工比目前设想的更为复杂。在 ER 应激下,观察到 fOS 的增加,而 Yos9p 识别的关键糖结构 M7C 的水平保持不变。因此,我们的方法可以为酵母内质网糖蛋白 ERAD 的分子机制提供有价值的信息。

相似文献

6
Physiological and molecular functions of the cytosolic peptide:N-glycanase.细胞质肽:N-糖基酶的生理和分子功能。
Semin Cell Dev Biol. 2015 May;41:110-20. doi: 10.1016/j.semcdb.2014.11.009. Epub 2014 Dec 2.

引用本文的文献

7
Cryo-EM structure of fission yeast tetrameric α-mannosidase Ams1.裂殖酵母四聚体α-甘露糖苷酶 Ams1 的冷冻电镜结构
FEBS Open Bio. 2020 Nov;10(11):2437-2451. doi: 10.1002/2211-5463.12988. Epub 2020 Oct 20.
9
Letting go of -glycans.释放聚糖。
J Biol Chem. 2019 Nov 1;294(44):15912-15913. doi: 10.1074/jbc.H119.011245.
10
Protein quality control in the secretory pathway.分泌途径中的蛋白质质量控制。
J Cell Biol. 2019 Oct 7;218(10):3171-3187. doi: 10.1083/jcb.201906047. Epub 2019 Sep 19.

本文引用的文献

10
Getting in and out from calnexin/calreticulin cycles.进出钙连蛋白/钙网蛋白循环。
J Biol Chem. 2008 Apr 18;283(16):10221-5. doi: 10.1074/jbc.R700048200. Epub 2008 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验