Suppr超能文献

基于配体的虚拟筛选的新型方法——单类分类:糖原合酶激酶 3β抑制剂为例。

One-class classification as a novel method of ligand-based virtual screening: the case of glycogen synthase kinase 3β inhibitors.

机构信息

Department of Chemistry, Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia.

出版信息

Bioorg Med Chem Lett. 2011 Nov 15;21(22):6728-31. doi: 10.1016/j.bmcl.2011.09.051. Epub 2011 Sep 21.

Abstract

A virtual screening system based on one-class classification with molecular fingerprints as descriptors is developed and tested on a series of 1226 inhibitors and 209 noninhibitors of glycogen synthase kinase 3β (GSK-3β). The suggested system outperforms the ones based on pharmacophore hypothesis and molecular docking in a retrospective study. However, in a prospective study it should not be used as a sole classifier. The system is exceptionally useful for the identification of new scaffolds among the virtual screening results obtained with other methods.

摘要

开发了一种基于分子指纹作为描述符的单类分类的虚拟筛选系统,并在一系列 1226 种糖原合酶激酶 3β(GSK-3β)抑制剂和 209 种非抑制剂上进行了测试。在回顾性研究中,所提出的系统优于基于药效团假设和分子对接的系统。然而,在前瞻性研究中,它不应该被用作单一分类器。该系统对于在使用其他方法获得的虚拟筛选结果中识别新骨架非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验