Suppr超能文献

人胰岛淀粉样多肽诱导β细胞功能丧失中 ATP 敏感性钾 (K(ATP)) 通道的作用。

Involvement of ATP-sensitive potassium (K(ATP)) channels in the loss of beta-cell function induced by human islet amyloid polypeptide.

机构信息

Diabetes and Obesity Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, 08036 Barcelona, Spain.

出版信息

J Biol Chem. 2011 Nov 25;286(47):40857-66. doi: 10.1074/jbc.M111.232801. Epub 2011 Oct 7.

Abstract

Islet amyloid polypeptide (IAPP) is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes. It is known that IAPP can inhibit glucose-stimulated insulin secretion; however, the mechanisms of action have not yet been established. In the present work, using a rat pancreatic beta-cell line, INS1E, we have created an in vitro model that stably expressed human IAPP gene (hIAPP cells). These cells showed intracellular oligomers and a strong alteration of glucose-stimulated insulin and IAPP secretion. Taking advantage of this model, we investigated the mechanism by which IAPP altered beta-cell secretory response and contributed to the development of type 2 diabetes. We have measured the intracellular Ca(2+) mobilization in response to different secretagogues as well as mitochondrial metabolism. The study of calcium signals in hIAPP cells demonstrated an absence of response to glucose and also to tolbutamide, indicating a defect in ATP-sensitive potassium (K(ATP)) channels. Interestingly, hIAPP showed a greater maximal respiratory capacity than control cells. These data were confirmed by an increased mitochondrial membrane potential in hIAPP cells under glucose stimulation, leading to an elevated reactive oxygen species level as compared with control cells. We concluded that the hIAPP overexpression inhibits insulin and IAPP secretion in response to glucose affecting the activity of K(ATP) channels and that the increased mitochondrial metabolism is a compensatory response to counteract the secretory defect of beta-cells.

摘要

胰岛淀粉样多肽(IAPP)是 2 型糖尿病患者胰岛中淀粉样沉积的主要成分。已知 IAPP 可抑制葡萄糖刺激的胰岛素分泌;然而,其作用机制尚未确定。在本工作中,我们使用大鼠胰岛β细胞系 INS1E,创建了一种稳定表达人 IAPP 基因(hIAPP 细胞)的体外模型。这些细胞显示出细胞内低聚物和葡萄糖刺激的胰岛素和 IAPP 分泌的强烈改变。利用该模型,我们研究了 IAPP 改变β细胞分泌反应并有助于 2 型糖尿病发展的机制。我们测量了对不同激动剂的细胞内 Ca(2+)动员以及线粒体代谢。hIAPP 细胞中钙信号的研究表明,对葡萄糖和甲苯磺丁脲没有反应,表明 ATP 敏感性钾(K(ATP))通道缺陷。有趣的是,hIAPP 显示出比对照细胞更大的最大呼吸能力。这些数据通过在葡萄糖刺激下 hIAPP 细胞中增加的线粒体膜电位得到证实,导致与对照细胞相比,活性氧水平升高。我们得出结论,hIAPP 的过表达抑制了葡萄糖刺激下胰岛素和 IAPP 的分泌,影响了 K(ATP)通道的活性,而增加的线粒体代谢是对抗β细胞分泌缺陷的代偿反应。

相似文献

1
2
Inhibition of BACE2 counteracts hIAPP-induced insulin secretory defects in pancreatic β-cells.
FASEB J. 2015 Jan;29(1):95-104. doi: 10.1096/fj.14-255489. Epub 2014 Oct 23.
3
Alpha1-antitrypsin ameliorates islet amyloid-induced glucose intolerance and β-cell dysfunction.
Mol Metab. 2020 Jul;37:100984. doi: 10.1016/j.molmet.2020.100984. Epub 2020 Mar 27.
4
The β-cell assassin: IAPP cytotoxicity.
J Mol Endocrinol. 2017 Oct;59(3):R121-R140. doi: 10.1530/JME-17-0105. Epub 2017 Aug 15.
5
The S20G substitution in hIAPP is more amyloidogenic and cytotoxic than wild-type hIAPP in mouse islets.
Diabetologia. 2016 Oct;59(10):2166-71. doi: 10.1007/s00125-016-4045-x. Epub 2016 Sep 1.
6
Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.
PLoS One. 2014 Jul 10;9(7):e101797. doi: 10.1371/journal.pone.0101797. eCollection 2014.
7
Functional proteasome complex is required for turnover of islet amyloid polypeptide in pancreatic β-cells.
J Biol Chem. 2018 Sep 14;293(37):14210-14223. doi: 10.1074/jbc.RA118.002414. Epub 2018 Jul 16.
9
Beta-cell selective K(ATP)-channel activation protects beta-cells and human islets from human islet amyloid polypeptide induced toxicity.
Regul Pept. 2010 Dec 10;165(2-3):158-62. doi: 10.1016/j.regpep.2010.06.009. Epub 2010 Jul 6.
10

引用本文的文献

3
The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer's diseases.
Diabetol Metab Syndr. 2023 May 13;15(1):101. doi: 10.1186/s13098-023-01082-1.
4
Urolithin B: Two-way attack on IAPP proteotoxicity with implications for diabetes.
Front Endocrinol (Lausanne). 2022 Dec 15;13:1008418. doi: 10.3389/fendo.2022.1008418. eCollection 2022.
6
Contribution of Mitochondria to Insulin Secretion by Various Secretagogues.
Antioxid Redox Signal. 2022 May;36(13-15):920-952. doi: 10.1089/ars.2021.0113. Epub 2021 Aug 24.
8
The Pancreatic β-Cell: The Perfect Redox System.
Antioxidants (Basel). 2021 Jan 29;10(2):197. doi: 10.3390/antiox10020197.
9
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus.
J Nutr Metab. 2020 May 21;2020:4143802. doi: 10.1155/2020/4143802. eCollection 2020.
10
Glucose-Stimulated Insulin Secretion Fundamentally Requires HO Signaling by NADPH Oxidase 4.
Diabetes. 2020 Jul;69(7):1341-1354. doi: 10.2337/db19-1130. Epub 2020 Apr 3.

本文引用的文献

4
Abeta and human amylin share a common toxicity pathway via mitochondrial dysfunction.
Proteomics. 2010 Apr;10(8):1621-33. doi: 10.1002/pmic.200900651.
5
Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence?
Diabetologia. 2010 Jun;53(6):1046-56. doi: 10.1007/s00125-010-1671-6. Epub 2010 Feb 25.
7
Measuring mitochondrial bioenergetics in INS-1E insulinoma cells.
Methods Enzymol. 2009;457:405-24. doi: 10.1016/S0076-6879(09)05023-X.
9
Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis.
Diabetologia. 2009 Apr;52(4):626-35. doi: 10.1007/s00125-008-1255-x. Epub 2009 Jan 16.
10
Amyloid oligomers in diabetic and nondiabetic human pancreas.
Transl Res. 2009 Jan;153(1):24-32. doi: 10.1016/j.trsl.2008.10.009. Epub 2008 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验