Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA.
Retrovirology. 2011 Oct 10;8:79. doi: 10.1186/1742-4690-8-79.
The HIV-1 protease is initially synthesized as part of the Gag-Pol polyprotein in the infected cell. Protease autoprocessing, by which the protease domain embedded in the precursor catalyzes essential cleavage reactions, leads to liberation of the free mature protease at the late stage of the replication cycle. To examine autoprocessing reactions in transfected mammalian cells, we previously described an assay using a fusion precursor consisting of the mature protease (PR) along with its upstream transframe region (p6*) sandwiched between GST and a small peptide epitope.
In this report, we studied two autoprocessing cleavage reactions, one between p6* and PR (the proximal site) and the other in the N-terminal region of p6* (the distal site) catalyzed by the embedded protease, using our cell-based assay. A fusion precursor carrying the NL4-3 derived protease cleaved both sites, whereas a precursor with a pseudo wild type protease preferentially autoprocessed the proximal site. Mutagenesis analysis demonstrated that several residues outside the active site (Q7, L33, N37, L63, C67 and H69) contributed to the differential substrate specificity. Furthermore, the cleavage reaction at the proximal site mediated by the embedded protease in precursors carrying different protease sequences or C-terminal fusion peptides displayed varied sensitivity to inhibition by darunavir, a catalytic site inhibitor. On the other hand, polypeptides such as a GCN4 motif, GFP, or hsp70 fused to the N-terminus of p6* had a minimal effect on darunavir inhibition of either cleavage reaction.
Taken together, our data suggest that several non-active site residues and the C-terminal flanking peptides regulate embedded protease activity through modulation of the catalytic site conformation. The cell-based assay provides a sensitive tool to study protease autoprocessing reactions in mammalian cells.
HIV-1 蛋白酶最初作为感染细胞中 Gag-Pol 多蛋白的一部分合成。蛋白酶自身切割,即嵌入前体中的蛋白酶域催化必需的切割反应,导致在复制周期的晚期释放游离的成熟蛋白酶。为了在转染的哺乳动物细胞中检查自身切割反应,我们之前描述了一种使用融合前体的测定法,该融合前体由成熟蛋白酶 (PR) 及其上游跨框架区 (p6*) 组成,夹在 GST 和一个小肽表位之间。
在本报告中,我们使用基于细胞的测定法研究了两种自身切割裂解反应,一种是在 p6和 PR 之间(近端位点),另一种是在 p6的 N 端区域(远端位点),由嵌入的蛋白酶催化。携带 NL4-3 衍生蛋白酶的融合前体切割了这两个位点,而具有伪野生型蛋白酶的前体优先自身切割近端位点。突变分析表明,活性位点之外的几个残基(Q7、L33、N37、L63、C67 和 H69)有助于不同的底物特异性。此外,携带不同蛋白酶序列或 C 端融合肽的前体中嵌入蛋白酶介导的近端位点切割反应对催化位点抑制剂 darunavir 的抑制作用表现出不同的敏感性。另一方面,融合到 p6*的 N 端的多肽,如 GCN4 基序、GFP 或 hsp70,对两种切割反应的 darunavir 抑制作用影响很小。
综上所述,我们的数据表明,几个非活性位点残基和 C 端侧翼肽通过调节催化位点构象来调节嵌入蛋白酶的活性。基于细胞的测定法为研究哺乳动物细胞中蛋白酶自身切割反应提供了一种敏感的工具。