Department of Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan.
J Virol. 2011 Oct;85(19):10079-89. doi: 10.1128/JVI.05121-11. Epub 2011 Aug 3.
Dimerization of HIV protease is essential for the acquisition of protease's proteolytic activity. We previously identified a group of HIV protease dimerization inhibitors, including darunavir (DRV). In the present work, we examine whether loss of DRV's protease dimerization inhibition activity is associated with HIV development of DRV resistance. Single amino acid substitutions, including I3A, L5A, R8A/Q, L24A, T26A, D29N, R87K, T96A, L97A, and F99A, disrupted protease dimerization, as examined using an intermolecular fluorescence resonance energy transfer (FRET)-based HIV expression assay. All recombinant HIV(NL4-3)-based clones with such a protease dimerization-disrupting substitution failed to replicate. A highly DRV-resistant in vitro-selected HIV variant and clinical HIV strains isolated from AIDS patients failing to respond to DRV-containing antiviral regimens typically had the V32I, L33F, I54M, and I84V substitutions in common in protease. None of up to 3 of the 4 substitutions affected DRV's protease dimerization inhibition, which was significantly compromised by the four combined substitutions. Recombinant infectious clones containing up to 3 of the 4 substitutions remained sensitive to DRV, while a clonal HIV variant with all 4 substitutions proved highly resistant to DRV with a 205-fold 50% effective concentration (EC(50)) difference compared to HIV(NL4-3). The present data suggest that the loss of DRV activity to inhibit protease dimerization represents a novel mechanism contributing to HIV resistance to DRV. The finding that 4 substitutions in PR are required for significant loss of DRV's protease dimerization inhibition should at least partially explain the reason DRV has a high genetic barrier against HIV's acquisition of DRV resistance.
HIV 蛋白酶的二聚化对于获得蛋白酶的蛋白水解活性至关重要。我们之前鉴定了一组 HIV 蛋白酶二聚化抑制剂,包括达芦那韦(DRV)。在本工作中,我们研究了 DRV 失去对蛋白酶二聚化的抑制活性是否与 HIV 对 DRV 耐药性的发展有关。单点氨基酸取代,包括 I3A、L5A、R8A/Q、L24A、T26A、D29N、R87K、T96A、L97A 和 F99A,破坏了蛋白酶二聚化,这通过使用分子间荧光共振能量转移(FRET)基于 HIV 表达测定来检查。所有具有这种蛋白酶二聚化破坏取代的基于重组 HIV(NL4-3)的克隆均无法复制。在体外高度耐药的 DRV 选择的 HIV 变体和来自对含 DRV 的抗病毒方案无反应的 AIDS 患者的临床 HIV 株通常在蛋白酶中具有共同的 V32I、L33F、I54M 和 I84V 取代。在蛋白酶中,多达 3 个取代中的任何一个都不会影响 DRV 的蛋白酶二聚化抑制作用,而这一作用会因 4 个取代的组合而显著受损。含有多达 3 个取代的重组感染性克隆仍然对 DRV 敏感,而具有所有 4 个取代的克隆 HIV 变体对 DRV 具有高度耐药性,与 HIV(NL4-3)相比,其 50%有效浓度(EC50)差异为 205 倍。本数据表明,DRV 抑制蛋白酶二聚化的活性丧失代表了导致 HIV 对 DRV 耐药的一种新机制。发现 PR 中的 4 个取代对于显著丧失 DRV 的蛋白酶二聚化抑制作用是必要的,这至少部分解释了为什么 DRV 对 HIV 获得 DRV 耐药性具有很高的遗传屏障。