Institute of Inorganic and Applied Chemistry, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany.
Inorg Chem. 2011 Nov 7;50(21):11055-63. doi: 10.1021/ic201596x. Epub 2011 Oct 10.
A new metal-organic framework, called UHM-6 (UHM: University of Hamburg Materials), based on the copper paddle wheel motif and a novel organosilicon linker, 4',4″-(dimethylsilanediyl)bis(biphenyl-3,5-dicarboxylic acid) (sbbip), has been synthesized and characterized with regard to its gas storage behavior up to 1 bar for hydrogen, methane, and carbon dioxide. The 2-fold interpenetrated microporous framework of UHM-6 is isoreticular to PMOF-3 (Inorg. Chem.2009, 48, 11507) and is composed of cuboctahedral cages of Cu(2) paddle wheels connected via nonlinear organosilicon units. The structure (SG I422, No. 97) is characterized by straight channels running along the [001] and [110] direction. UHM-6 reveals a specific surface area of S(BET) ~ 1200 m(2) g(-1) and a specific micropore volume of V(micropore) ~ 0.48 cm(3) g(-1). At 1 bar the activated form of UHM-6 shows a hydrogen uptake of 1.8 wt % (77 K), a methane uptake of 0.8 mmol g(-1) (293 K), and a carbon dioxide uptake of 3.3 mmol g(-1) (273 K). Accompanying theoretical grand-canonical Monte Carlo (GCMC) simulations show an overall good agreement with the experimental results. Furthermore, GCMC adsorption simulations for three binary equimolar mixtures (CH(4)/H(2), CO(2)/H(2), and CO(2)/CH(4)) were carried out (T = 298 K) to assess the potential for gas separation/purification applications.
一种新的金属有机骨架,称为 UHM-6(UHM:汉堡大学材料),基于铜桨轮基元和一种新的有机硅连接体,4',4“-(二甲基硅基)双(联苯-3,5-二羧酸)(sbbip),已被合成并对其气体存储行为进行了表征,最高可达 1 巴的氢气,甲烷和二氧化碳。UHM-6 的 2 倍互穿微孔骨架与 PMOF-3(Inorg。化学。2009,48,11507)是等孔的,由通过非线性有机硅单元连接的 Cu(2)桨轮的立方八面体笼组成。该结构(SG I422,编号 97)的特点是沿[001]和[110]方向延伸的直通道。UHM-6 的比表面积为 S(BET)1200 m2 g-1,微孔体积为 V(微孔)0.48 cm3 g-1。在 1 巴下,UHM-6 的活化形式显示出 1.8wt%(77K)的氢吸收,0.8mmol g-1(293K)的甲烷吸收和 3.3mmol g-1(273K)的二氧化碳吸收。伴随的理论巨正则蒙特卡罗(GCMC)模拟显示与实验结果总体上吻合良好。此外,还进行了三个二元等摩尔混合物(CH4/H2,CO2/H2 和 CO2/CH4)的 GCMC 吸附模拟(T=298K),以评估用于气体分离/净化应用的潜力。