Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio 43614, United States.
Biochemistry. 2011 Nov 15;50(45):9886-900. doi: 10.1021/bi2012004. Epub 2011 Oct 19.
Alanyl-tRNA synthetase, a dimeric class 2 aminoacyl-tRNA synthetase, activates glycine and serine at significant rates. An editing activity hydrolyzes Gly-tRNA(ala) and Ser-tRNA(ala) to ensure fidelity of aminoacylation. Analytical ultracentrifugation demonstrates that the enzyme is predominately a dimer in solution. ATP binding to full length enzyme (ARS875) and to an N-terminal construct (ARS461) is endothermic (ΔH = 3-4 kcal mol(-1)) with stoichiometries of 1:1 for ARS461 and 2:1 for full-length dimer. Binding of aminoacyl-adenylate analogues, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine (ASAd) and 5'-O-[N-(L-glycinyl)sulfamoyl]adenosine (GSAd), are exothermic; ASAd exhibits a large negative heat capacity change (ΔC(p) = 0.48 kcal mol(-1) K(-1)). Modification of alanyl-tRNA synthetase with periodate-oxidized tRNA(ala) (otRNA(ala)) generates multiple, covalent, enzyme-tRNA(ala) products. The distribution of these products is altered by ATP, ATP and alanine, and aminoacyl-adenylate analogues (ASAd and GSAd). Alanyl-tRNA synthetase was modified with otRNA(ala), and tRNA-peptides from tryptic digests were purified by ion exchange chromatography. Six peptides linked through a cyclic dehydromoropholino structure at the 3'-end of tRNA(ala) were sequenced by mass spectrometry. One site lies in the N-terminal adenylate synthesis domain (residue 74), two lie in the opening to the editing site (residues 526 and 585), and three (residues 637, 639, and 648) lie on the back side of the editing domain. At least one additional modification site was inferred from analysis of modification of ARS461. The location of the sites modified by otRNA(ala) suggests that there are multiple modes of interaction of tRNA(ala) with the enzyme, whose distribution is influenced by occupation of the ATP binding site.
丙氨酰-tRNA 合成酶是一种二聚体的 II 类氨酰-tRNA 合成酶,能够以较高的速率激活甘氨酸和丝氨酸。一种编辑活性可将 Gly-tRNA(ala)和 Ser-tRNA(ala)水解,以确保氨酰化的准确性。分析超速离心表明,该酶在溶液中主要为二聚体。ATP 与全长酶(ARS875)和 N 端结构域(ARS461)的结合是吸热的(ΔH = 3-4 kcal mol(-1)),对于 ARS461 和全长二聚体,其化学计量比分别为 1:1 和 2:1。氨酰腺苷酸类似物 5'-O-[N-(L-丙氨酰)磺酰胺基]腺苷(ASAd)和 5'-O-[N-(L-甘氨酰)磺酰胺基]腺苷(GSAd)的结合是放热的;ASAd 表现出较大的负热容变化(ΔC(p) = 0.48 kcal mol(-1) K(-1))。用高碘酸盐氧化的 tRNA(ala)(otRNA(ala))修饰丙氨酰-tRNA 合成酶会产生多种共价连接的酶-tRNA(ala)产物。这些产物的分布通过 ATP、ATP 和丙氨酸以及氨酰腺苷酸类似物(ASAd 和 GSAd)发生改变。用 otRNA(ala)修饰丙氨酰-tRNA 合成酶,并用离子交换色谱法从胰蛋白酶消化物中纯化 tRNA-肽。通过质谱法对通过 tRNA(ala)3'端的环脱水吗啉环结构连接的六个肽进行测序。一个位点位于 N 端腺苷酸合成结构域(残基 74),两个位点位于编辑位点的开口处(残基 526 和 585),三个位点(残基 637、639 和 648)位于编辑结构域的背面。从 ARS461 修饰分析推断至少还有一个修饰位点。otRNA(ala)修饰的位点位置表明,tRNA(ala)与酶之间存在多种相互作用模式,其分布受 ATP 结合位点占据的影响。