Targacept Inc, Molecular Design, 200 East First Street, Suite 300, Winston-Salem, NC 27101-4165, USA.
Eur J Med Chem. 2011 Nov;46(11):5625-35. doi: 10.1016/j.ejmech.2011.09.033. Epub 2011 Sep 29.
AChBPs isolated from Lymnaea stagnalis (Ls), Aplysia californica (Ac) and Bulinus truncatus (Bt) have been extensively used as structural prototypes to understand the molecular mechanisms that underlie ligand-interactions with nAChRs [1]. Here, we describe docking studies on interactions of benzylidene anabaseine analogs with AChBPs and α7 nAChR. Results reveal that docking of these compounds using Glide software accurately reproduces experimentally-observed binding modes of DMXBA and of its active metabolite, in the binding pocket of Ac. In addition to the well-known nicotinic pharmacophore (positive charge, hydrogen-bond acceptor, and hydrophobic aromatic groups), a hydrogen-bond donor feature contributes to binding of these compounds to Ac, Bt, and the α7 nAChR. This is consistent with benzylidene anabaseine analogs with OH and NH(2) functional groups showing the highest binding affinity of these congeners, and the position of the ligand shown in previous X-ray crystallographic studies of ligand-Ac complexes. In the predicted ligand-Ls complex, by contrast, the ligand OH group acts as hydrogen-bond acceptor. We have applied our structural findings to optimizing the design of novel spirodiazepine and spiroimidazoline quinuclidine series. Binding and functional studies revealed that these hydrogen-bond donor containing compounds exhibit improved affinity and selectivity for the α7 nAChR subtype and demonstrate partial agonism. The gain in affinity is also due to conformational restriction, tighter hydrophobic enclosures, and stronger cation-π interactions. The use of AChBPs structure as a surrogate to predict binding affinity to α7 nAChR has also been investigated. On the whole, we found that molecular docking into Ls binding site generally scores better than when a α7 homology model, Bt or Ac crystal structure is used.
从田螺(Ls)、加利福尼亚海兔(Ac)和布氏锥实螺(Bt)中分离出的 AChBPs 被广泛用作结构原型,以了解配体与 nAChRs 相互作用的分子机制[1]。在这里,我们描述了苯亚甲基安非他命类似物与 AChBPs 和 α7 nAChR 相互作用的对接研究。结果表明,使用 Glide 软件对接这些化合物可以准确再现 DMXBA 及其活性代谢物在 Ac 结合口袋中的实验观察到的结合模式。除了众所周知的烟碱类药效团(正电荷、氢键受体和疏水性芳香基团)外,氢键供体特征有助于这些化合物与 Ac、Bt 和 α7 nAChR 的结合。这与具有 OH 和 NH2 官能团的苯亚甲基安非他命类似物表现出这些同系物最高的结合亲和力以及以前的配体-Ac 复合物的 X 射线晶体结构研究中所示的配体位置一致。相比之下,在预测的配体-Ls 复合物中,配体的 OH 基团充当氢键受体。我们将结构发现应用于新型螺环二氮杂卓和螺环咪唑啉奎宁啶系列的设计优化中。结合和功能研究表明,这些含有氢键供体的化合物对 α7 nAChR 亚型表现出改善的亲和力和选择性,并显示部分激动作用。亲和力的提高还归因于构象限制、更紧密的疏水性封闭和更强的阳离子-π 相互作用。还研究了将 AChBPs 结构用作预测与 α7 nAChR 结合亲和力的替代物。总的来说,我们发现分子对接到 Ls 结合位点的评分通常优于使用 α7 同源模型、Bt 或 Ac 晶体结构时的评分。