Suppr超能文献

靶向 site 的自旋标记研究大肠杆菌二氢乳清酸脱氢酶 N 端延伸。

Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension.

机构信息

Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, C.P. 369, 13560-970, São Carlos, SP, Brazil.

出版信息

Biochem Biophys Res Commun. 2011 Oct 28;414(3):487-92. doi: 10.1016/j.bbrc.2011.09.092. Epub 2011 Oct 2.

Abstract

Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

摘要

二氢乳清酸脱氢酶(DHODHs)是催化嘧啶核苷酸从头合成的第四步的酶。在该反应中,DHODH 使用黄素单核苷酸作为辅助因子将二氢乳清酸转化为乳清酸。由于哺乳动物与寄生虫的核苷酸合成途径不同,DHODH 作为药物设计的有前途的靶标引起了广泛关注。大肠杆菌 DHODH(EcDHODH)是一种家族 2 DHODH,为了促进催化作用而与细胞膜相互作用。这种膜结合据称是通过酶的 N 端的延伸来实现的。在本工作中,我们使用定点自旋标记(SDSL)将磁探针特异性地放置在 N 端的 2、5、19 和 21 位,从而通过电子自旋共振(ESR)监测在存在膜模型系统的情况下该区域的动力学和结构变化。总的来说,我们的 ESR 光谱表明 N 端确实与膜结合,并且它具有一定的高灵活性,这可能与该区域作为分子盖的作用有关,该分子盖控制酶的活性部位的入口,从而允许酶进入分散在膜中的并对催化作用必不可少的醌类物质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验