Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
Dalton Trans. 2011 Dec 14;40(46):12500-9. doi: 10.1039/c1dt11235j. Epub 2011 Oct 11.
Reactions of the β-diketiminato n-butyl magnesium complex, [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)Mg(n)Bu], with a range of substituted pyridines and fused-ring quinolines in the presence of PhSiH(3) has been found to result in dearomatisation of the N-heterocyclic compounds. This reaction is proposed to occur through the formation of an unobserved N-heterocycle-coordinated magnesium hydride and subsequent hydride transfer via the C2-position of the heterocycle prior to hydride transfer to the C4-position and formation of thermodynamically-favoured magnesium 1,4-dihydropyridides. This reaction is kinetically suppressed for 2,6-dimethylpyridine while the kinetic product, the 1,2-dihydropyridide derivative, was isolated through reaction with 4-methylpyridine (4-methylpyridine), in which case the formation of the 1,4-dihyropyridide is prevented by the presence of the 4-methyl substituent. X-ray structures of the products of these reactions with 4-methylpyridine, 3,5-dimethylpyridine and iso-quinoline comprise a pseudo-tetrahedral magnesium centre while the regiochemistry of the particular dearomatisation reaction is determined by the substitution pattern of the N-heterocycle under observation. The compounds are all air-sensitive and exposure of the magnesium derivatives of dearomatised pyridine and 4-dimethylaminopyridine (DMAP) to air resulted in ligand rearomatisation and the formation of dimeric μ(2)-η(2)-η(2)-peroxomagnesium compounds which have also been subject to analysis by single crystal X-ray diffraction analysis. An unsuccessful extension of this chemistry to N-heterocycle hydrosilylation is suggested to be a consequence of the low basicity of the silane reagent in comparison to the pyridine substrates which effectively impedes any further interaction with the magnesium centres.
β-二酮亚胺正丁基镁配合物[HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)Mg(n)Bu]与一系列取代吡啶和稠合喹啉在 PhSiH(3)存在下的反应导致 N-杂环化合物的去芳构化。该反应被认为是通过形成未观察到的 N-杂环配位镁氢化物以及随后通过杂环的 C2 位进行氢化物转移来发生的,然后氢化物转移到 C4 位并形成热力学有利的镁 1,4-二氢吡啶。该反应对于 2,6-二甲基吡啶是动力学抑制的,而动力学产物,即 1,2-二氢吡啶衍生物,通过与 4-甲基吡啶(4-甲基吡啶)反应而被分离,在这种情况下,由于 4-甲基取代基的存在,阻止了 1,4-二氢吡啶的形成。这些反应与 4-甲基吡啶、3,5-二甲基吡啶和异喹啉的产物的 X 射线结构包含一个拟四面体镁中心,而特定的去芳构化反应的区域化学由观察到的 N-杂环的取代模式决定。这些化合物都是对空气敏感的,去芳构化吡啶和 4-二甲基氨基吡啶(DMAP)的镁衍生物暴露于空气中会导致配体重新芳构化,并形成二聚μ(2)-η(2)-η(2)-过氧镁化合物,这些化合物也已经通过单晶 X 射线衍射分析进行了分析。将这种化学方法扩展到 N-杂环氢化硅烷化的不成功被认为是由于硅烷试剂的碱性低于吡啶底物,这有效地阻止了与镁中心的任何进一步相互作用。