Suppr超能文献

温度梯度下的水:传热的极化效应和微观机制。

Water under temperature gradients: polarization effects and microscopic mechanisms of heat transfer.

机构信息

Chemical Physics Section, Department of Chemistry, Imperial College London, The Thomas Young Centre, London, UK.

出版信息

Phys Chem Chem Phys. 2011 Nov 28;13(44):19970-8. doi: 10.1039/c1cp21895f. Epub 2011 Oct 11.

Abstract

We report non-equilibrium molecular dynamics simulations (NEMD) of water under temperature gradients using a modified version of the central force model (MCFM). This model is very accurate in predicting the equation of state of water for a wide range of pressures and temperatures. We investigate the polarization response of water to thermal gradients, an effect that has been recently predicted using Non-Equilibrium Thermodynamics (NET) theory and computer simulations, as a function of the thermal gradient strength. We find that the polarization of the liquid varies linearly with the gradient strength, which indicates that the ratio of phenomenological coefficients regulating the coupling between the polarization response and the heat flux is independent of the gradient strength investigated. This notion supports the NET theoretical predictions. The coupling effect leading to the liquid polarization is fairly strong, leading to polarization fields of ~10(3-6) V m(-1) for gradients of ~10(5-8) K m(-1), hence confirming earlier estimates. Finally we employ our NEMD approach to investigate the microscopic mechanism of heat transfer in water. The image emerging from the computation and analysis of the internal energy fluxes is that the transfer of energy is dominated by intermolecular interactions. For the MCFM model, we find that the contribution from hydrogen and oxygen is different, with the hydrogen contribution being larger than that of oxygen.

摘要

我们使用中央力模型(MCFM)的修改版本对温度梯度下的水进行非平衡分子动力学模拟(NEMD)。该模型在预测水的状态方程方面非常准确,适用于广泛的压力和温度范围。我们研究了水对热梯度的极化响应,这是最近使用非平衡热力学(NET)理论和计算机模拟预测的一种效应,作为热梯度强度的函数。我们发现液体的极化与梯度强度呈线性关系,这表明调节极化响应和热流之间耦合的唯象系数的比值与所研究的梯度强度无关。这一概念支持 NET 理论预测。导致液体极化的耦合效应相当强,导致在 ~10(5-8) K m(-1)的梯度下产生约 10(3-6) V m(-1)的极化场,因此证实了早期的估计。最后,我们采用我们的 NEMD 方法研究水的传热微观机制。从内部能量通量的计算和分析中得出的图像是,能量的传递主要由分子间相互作用决定。对于 MCFM 模型,我们发现氢和氧的贡献不同,氢的贡献大于氧的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验