Suppr超能文献

用流式细胞术数据的层次聚类检测和监测正常和白血病细胞群体。

Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data.

机构信息

Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom.

出版信息

Cytometry A. 2012 Jan;81(1):25-34. doi: 10.1002/cyto.a.21148. Epub 2011 Oct 11.

Abstract

Flow cytometry is a valuable tool in research and diagnostics including minimal residual disease (MRD) monitoring of hematologic malignancies. However, its gradual advancement toward increasing numbers of fluorescent parameters leads to information rich datasets, which are challenging to analyze by standard gating and do not reflect the multidimensionality of the data. We have developed a novel method to analyze complex flow cytometry data, based on hierarchical clustering analysis (HCA) but with a new underlying algorithm, using Mahalanobis distance measure. HCA is scalable to analyze complex multiparameter datasets (here demonstrated on up to 12 color flow cytometry and on a 20-parameter synthetic dataset). We have validated this method by comparison with standard gating approaches when performed independently by expert cytometrists. Acute lymphoblastic leukemia blast populations were analyzed in diagnostic and follow-up datasets (n = 123) from three centers. HCA results correlated very well (Passing-Bablok correlation coefficient = 0.992, slope = 1, intercept = -0.01) with standard gating data obtained by the I-BFM FLOW-MRD study group. To further improve the performance in follow-up samples with low MRD levels and to automate MRD detection, we combined HCA with support vector machine (SVM) learning. HCA in combination with SVM provides a novel diagnostic tool that not only allows analysis of increasingly complex flow cytometry data but also is less observer-dependent compared with classical gating and has potential for automation.

摘要

流式细胞术是一种非常有价值的工具,可用于研究和诊断,包括血液恶性肿瘤的微小残留病(MRD)监测。然而,它朝着增加荧光参数数量的方向逐渐发展,导致信息量丰富的数据集,这些数据集难以通过标准门控进行分析,并且不能反映数据的多维性。我们开发了一种基于层次聚类分析(HCA)但具有新底层算法的分析复杂流式细胞术数据的新方法,该算法使用马氏距离度量。HCA 可扩展以分析复杂的多参数数据集(在此最多可分析 12 色流式细胞术和 20 参数合成数据集)。我们通过与专家细胞仪独立进行的标准门控方法进行比较验证了该方法。在三个中心的诊断和随访数据集(n = 123)中分析了急性淋巴细胞白血病blasts 群体。HCA 结果与通过 I-BFM FLOW-MRD 研究小组获得的标准门控数据非常吻合(通过-巴布洛克相关系数= 0.992,斜率= 1,截距= -0.01)。为了进一步提高低 MRD 水平随访样本中的性能并实现 MRD 检测自动化,我们将 HCA 与支持向量机(SVM)学习相结合。HCA 与 SVM 相结合提供了一种新的诊断工具,不仅可以分析日益复杂的流式细胞术数据,而且与经典门控相比,观察者依赖性更小,并且具有自动化的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验