Suppr超能文献

米哈拉斯-尼布尔神经元的硅模型

Silicon modeling of the Mihalaş-Niebur neuron.

作者信息

Folowosele Fopefolu, Hamilton Tara Julia, Etienne-Cummings Ralph

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

IEEE Trans Neural Netw. 2011 Dec;22(12):1915-27. doi: 10.1109/TNN.2011.2167020. Epub 2011 Oct 10.

Abstract

There are a number of spiking and bursting neuron models with varying levels of complexity, ranging from the simple integrate-and-fire model to the more complex Hodgkin-Huxley model. The simpler models tend to be easily implemented in silicon but yet not biologically plausible. Conversely, the more complex models tend to occupy a large area although they are more biologically plausible. In this paper, we present the 0.5 μm complementary metal-oxide-semiconductor (CMOS) implementation of the Mihalaş-Niebur neuron model--a generalized model of the leaky integrate-and-fire neuron with adaptive threshold--that is able to produce most of the known spiking and bursting patterns that have been observed in biology. Our implementation modifies the original proposed model, making it more amenable to CMOS implementation and more biologically plausible. All but one of the spiking properties--tonic spiking, class 1 spiking, phasic spiking, hyperpolarized spiking, rebound spiking, spike frequency adaptation, accommodation, threshold variability, integrator and input bistability--are demonstrated in this model.

摘要

有许多具有不同复杂程度的脉冲发放和爆发式神经元模型,从简单的积分发放模型到更复杂的霍奇金 - 赫胥黎模型。较简单的模型往往易于在硅片中实现,但在生物学上不太合理。相反,较复杂的模型尽管在生物学上更合理,但往往占用大面积。在本文中,我们展示了米哈拉斯 - 尼布尔神经元模型在0.5微米互补金属氧化物半导体(CMOS)上的实现——一种具有自适应阈值的泄漏积分发放神经元的广义模型——它能够产生生物学中观察到的大多数已知脉冲发放和爆发模式。我们的实现修改了原始提出的模型,使其更适合CMOS实现且在生物学上更合理。该模型展示了除一种脉冲发放特性——紧张性脉冲发放、1类脉冲发放、相位性脉冲发放、超极化脉冲发放、反弹脉冲发放、脉冲频率适应、适应性、阈值变异性、积分器和输入双稳性——之外的所有特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验