Suppr超能文献

硫酸乙酰肝素对于晚期糖基化终产物受体(RAGE)介导的高迁移率族蛋白 1(HMGB1)信号转导是必需的。

Heparan sulfate is essential for high mobility group protein 1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE).

机构信息

Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, California 92093-0687.

Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, California 92093-0687.

出版信息

J Biol Chem. 2011 Dec 2;286(48):41736-41744. doi: 10.1074/jbc.M111.299685. Epub 2011 Oct 11.

Abstract

In a proteomic search for heparan sulfate-binding proteins on monocytes, we identified HMGB1 (high mobility group protein B1). The extracellular role of HMGB1 as a cytokine has been studied intensively and shown to be important as a danger-associated molecular pattern protein. Here, we report that the activity of HMGB1 depends on heparan sulfate. Binding and competition studies demonstrate that HMGB1 interacts with CHO and endothelial cell heparan sulfate. By site-directed mutagenesis, we identified a loop region that connects the A-box and B-box domains of HMGB1 as responsible for heparan sulfate binding. HMGB1-induced Erk1/2 and p38 phosphorylation is abolished when endothelial heparan sulfate is removed or blocked pharmacologically, resulting in decreased HMGB1-induced endothelial sprouting. However, mutated HMGB1 that lacks the heparan sulfate-binding site retained its signaling activity. We show the major receptor for HMGB1, receptor for advanced glycation end products (RAGE), also binds to heparan sulfate and that RAGE and heparan sulfate forms a complex. Our data establishes that the functional receptor for HMGB1 consists of a complex of RAGE and cell surface heparan sulfate.

摘要

在一项针对单核细胞中肝素硫酸结合蛋白的蛋白质组学研究中,我们鉴定到了高迁移率族蛋白 B1(HMGB1)。HMGB1 作为细胞因子的细胞外作用已被深入研究,并被证明作为一种危险相关分子模式蛋白很重要。在这里,我们报告 HMGB1 的活性依赖于肝素硫酸。结合和竞争研究表明,HMGB1 与 CHO 和内皮细胞肝素硫酸相互作用。通过定点突变,我们确定了连接 HMGB1 的 A 盒和 B 盒结构域的一个环区负责与肝素硫酸结合。当内皮肝素硫酸被去除或被药理学阻断时,HMGB1 诱导的 Erk1/2 和 p38 磷酸化被废除,导致 HMGB1 诱导的内皮发芽减少。然而,缺乏肝素硫酸结合位点的突变 HMGB1 保留了其信号转导活性。我们表明,HMGB1 的主要受体,晚期糖基化终产物受体(RAGE),也与肝素硫酸结合,并且 RAGE 和肝素硫酸形成复合物。我们的数据表明,HMGB1 的功能受体由 RAGE 和细胞表面肝素硫酸组成的复合物构成。

相似文献

7
Extracellular HMGB1 released by NMDA treatment confers neuronal apoptosis via RAGE-p38 MAPK/ERK signaling pathway.
Neurotox Res. 2011 Aug;20(2):159-69. doi: 10.1007/s12640-010-9231-x. Epub 2010 Nov 30.
8
HMGB1 enhances mechanical stress-induced cardiomyocyte hypertrophy in vitro via the RAGE/ERK1/2 signaling pathway.
Int J Mol Med. 2019 Sep;44(3):885-892. doi: 10.3892/ijmm.2019.4276. Epub 2019 Jul 16.
10
The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site.
FEBS Lett. 2003 Aug 28;550(1-3):107-13. doi: 10.1016/s0014-5793(03)00846-9.

引用本文的文献

2
Targeting the heparan sulfate-binding site of RAGE with monoclonal antibodies.
Glycobiology. 2024 Apr 1;34(3). doi: 10.1093/glycob/cwae001.
3
RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity.
Cell Rep Med. 2023 Nov 21;4(11):101266. doi: 10.1016/j.xcrm.2023.101266. Epub 2023 Nov 8.
4
Targeting heparan sulfate-protein interactions with oligosaccharides and monoclonal antibodies.
Front Mol Biosci. 2023 May 19;10:1194293. doi: 10.3389/fmolb.2023.1194293. eCollection 2023.
5
Heparan sulfates and heparan sulfate binding proteins in sepsis.
Front Mol Biosci. 2023 Feb 14;10:1146685. doi: 10.3389/fmolb.2023.1146685. eCollection 2023.
6
Using heparan sulfate octadecasaccharide (18-mer) as a multi-target agent to protect against sepsis.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2209528120. doi: 10.1073/pnas.2209528120. Epub 2023 Jan 17.
7
Glycosaminoglycan Analysis: Purification, Structural Profiling, and GAG-Protein Interactions.
Methods Mol Biol. 2023;2597:159-176. doi: 10.1007/978-1-0716-2835-5_13.
9
Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis.
Front Cell Dev Biol. 2022 Jul 6;10:914891. doi: 10.3389/fcell.2022.914891. eCollection 2022.

本文引用的文献

1
Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability.
J Biol Chem. 2011 Jan 7;286(1):737-45. doi: 10.1074/jbc.M110.177006. Epub 2010 Oct 25.
3
The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature.
Circ Res. 2010 Mar 19;106(5):842-53. doi: 10.1161/CIRCRESAHA.109.212217.
4
HMGB1 and RAGE in inflammation and cancer.
Annu Rev Immunol. 2010;28:367-88. doi: 10.1146/annurev.immunol.021908.132603.
5
Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors.
Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):164-70. doi: 10.1016/j.bbagrm.2009.11.012. Epub 2009 Nov 13.
7
HMGB1: endogenous danger signaling.
Mol Med. 2008 Jul-Aug;14(7-8):476-84. doi: 10.2119/2008-00034.Klune.
8
How dying cells alert the immune system to danger.
Nat Rev Immunol. 2008 Apr;8(4):279-89. doi: 10.1038/nri2215. Epub 2008 Mar 14.
9
Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications.
Atherosclerosis. 2008 Jan;196(1):9-21. doi: 10.1016/j.atherosclerosis.2007.07.025. Epub 2007 Sep 10.
10
Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis.
J Cell Biol. 2007 May 7;177(3):539-49. doi: 10.1083/jcb.200610086. Epub 2007 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验