Suppr超能文献

资源有限环境下细菌性脑膜炎的预测因素:安哥拉病例。

Predictors of bacterial meningitis in resource-limited contexts: an Angolan case.

机构信息

Infectious Diseases Laboratory, Hospital Divina Providencia, Luanda, Angola.

出版信息

PLoS One. 2011;6(10):e25706. doi: 10.1371/journal.pone.0025706. Epub 2011 Oct 4.

Abstract

BACKGROUND

Despite the great morbidity and mortality that childhood bacterial meningitis (BM) is experiencing in Africa, diagnosis of BM in resource-limited contexts is still a challenge. Several algorithms and clinical predictors have been proposed to help physicians in decision-making but a lot of these markers used variables that are calculable only in well-equipped laboratories. Predictors or algorithm based on parameters that can be easily performed in basic laboratories can help significantly in BM diagnosis, even in resource-limited settings, rural hospitals or health centers.

RESULTS

This retrospective study examined 145 cerebral-spinal fluid (CSF) specimens from children from 2 months to 14 years. CSF specimens were divided into two groups, according to the presence or not of a clinical diagnosis of BM. For each specimen, CSF aspect, CSF white blood cells (WBC) count, CSF glucose and protein concentration were analyzed and statistical analysis were performed. CSF WBC count ≥10/µl is no more a valuable predictor of BM. CSF protein concentration ≥50 mg/dl has a better sensitivity for BM diagnosis and when used with CSF glucose concentration ≤40 mg/dl, can help to diagnose correctly almost all the BM cases. An algorithm including CSF protein concentration, glucose concentration and WBC count has been proposed to rule out BM and to correctly diagnose it.

CONCLUSIONS

In resource-limited health centers, the availability of a combination of easy-to-obtain parameters can significantly help physicians in BM diagnosis. The prompt identification of a BM case can be rapid treated or transferred to adequate structures and can modify the outcome in the patient.

摘要

背景

尽管儿童细菌性脑膜炎(BM)在非洲造成了巨大的发病率和死亡率,但在资源有限的环境中诊断 BM 仍然是一个挑战。已经提出了几种算法和临床预测因子来帮助医生做出决策,但其中许多标记使用的变量只能在设备齐全的实验室中计算。基于可以在基本实验室中轻松进行的参数的预测因子或算法可以极大地帮助诊断 BM,即使在资源有限的情况下、农村医院或保健中心也是如此。

结果

本回顾性研究检查了来自 2 个月至 14 岁儿童的 145 份脑脊髓液(CSF)标本。根据是否存在临床诊断为 BM,将 CSF 标本分为两组。对于每个标本,分析 CSF 外观、CSF 白细胞(WBC)计数、CSF 葡萄糖和蛋白质浓度,并进行统计分析。CSF WBC 计数≥10/µl 不再是 BM 的有价值预测因子。CSF 蛋白浓度≥50mg/dl 对 BM 诊断具有更好的敏感性,当与 CSF 葡萄糖浓度≤40mg/dl 结合使用时,几乎可以正确诊断所有 BM 病例。提出了一种包括 CSF 蛋白浓度、葡萄糖浓度和 WBC 计数的算法,用于排除 BM 并正确诊断。

结论

在资源有限的保健中心,易于获得的组合参数的可用性可以极大地帮助医生诊断 BM。迅速确定 BM 病例可以迅速进行治疗或转移到适当的结构,并可以改变患者的结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9899/3186799/c34180ac1f69/pone.0025706.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验