Suppr超能文献

羟基磷灰石载入微球支架中骨髓基质细胞的成骨分化。

Osteogenic differentiation of human bone marrow stromal cells in hydroxyapatite-loaded microsphere-based scaffolds.

机构信息

Orbis Biosciences, Kansas City, Kansas 66045, USA.

出版信息

Tissue Eng Part A. 2012 Apr;18(7-8):757-67. doi: 10.1089/ten.TEA.2011.0176. Epub 2011 Dec 2.

Abstract

Calcium-based minerals have consistently been shown to stimulate osteoblastic behavior in vitro and in vivo. Thus, use of such minerals in biomaterial applications has become an effective method to enhance bone tissue engineered constructs. In the present study, for the first time, human bone marrow stromal cells (hBMSC) were osteogenically differentiated on scaffolds consisting only of hydroxyapatite (HAp)-loaded poly(D,L-lactic acid-co-glycolic acid) (PLGA) microspheres of high monodispersity. Scaffold formulations included 0, 5, 10, and 20 wt% Hap, and the hBMSC were cultured for 6 weeks. Results demonstrated suppression of some osteogenic genes during differentiation in the HAp group, but higher end-point glycosaminoglycan and collagen content in 10% and 20% HAp samples, as evidenced by biochemical tests, histology, and immunohistochemistry. After 6 weeks of culture, constructs with 0% and 5% HAp had average compressive moduli of 0.7 ± 0.2 and 1.5 ± 0.9 kPa, respectively, whereas constructs with 10% and 20% HAp had higher average moduli of 17.6 ± 4.6 and 18.9 ± 8.1 kPa, respectively. The results of this study indicate that HAp inclusion in microsphere-based scaffolds could be implemented as a physical gradient in combination with bioactive signal gradients seen in previous iterations of these microsphere-based scaffolds to enhance osteoconduction and mechanical integrity of a healing site.

摘要

钙基矿物质已被证实能在体外和体内刺激成骨细胞的行为。因此,在生物材料应用中使用此类矿物质已成为增强组织工程化骨构建体的有效方法。在本研究中,首次在仅由载有羟基磷灰石(HAp)的聚(D,L-乳酸-co-乙醇酸)(PLGA)微球组成的支架上对人骨髓基质细胞(hBMSC)进行成骨分化,这些微球具有高单分散性。支架配方包括 0、5、10 和 20wt%的 HAp,hBMSC 培养 6 周。结果表明,在 HAp 组的分化过程中,一些成骨基因受到抑制,但在 10%和 20%HAp 样本中,终点糖胺聚糖和胶原蛋白含量较高,这可通过生化测试、组织学和免疫组织化学证实。培养 6 周后,0%和 5%HAp 构建体的平均压缩模量分别为 0.7±0.2kPa 和 1.5±0.9kPa,而 10%和 20%HAp 构建体的平均压缩模量分别为 17.6±4.6kPa 和 18.9±8.1kPa。本研究结果表明,将 HAp 纳入微球支架中可作为物理梯度与前几代微球支架中所见的生物活性信号梯度相结合,以增强骨传导性和愈合部位的机械完整性。

相似文献

1
Osteogenic differentiation of human bone marrow stromal cells in hydroxyapatite-loaded microsphere-based scaffolds.
Tissue Eng Part A. 2012 Apr;18(7-8):757-67. doi: 10.1089/ten.TEA.2011.0176. Epub 2011 Dec 2.
2
Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.
J Mater Sci Mater Med. 2016 Jul;27(7):121. doi: 10.1007/s10856-016-5734-1. Epub 2016 Jun 7.
3
Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.
Colloids Surf B Biointerfaces. 2016 Apr 1;140:382-391. doi: 10.1016/j.colsurfb.2016.01.005. Epub 2016 Jan 6.
6
Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration.
Tissue Eng Part A. 2013 Aug;19(15-16):1803-16. doi: 10.1089/ten.TEA.2012.0520. Epub 2013 Apr 16.
9
Fabrication and characterization of poly(lactic-co-glycolic acid) microsphere/amorphous calcium phosphate scaffolds.
J Tissue Eng Regen Med. 2012 Jan;6(1):12-20. doi: 10.1002/term.390. Epub 2011 Feb 10.

引用本文的文献

2
Microsphere-Based Osteochondral Scaffolds Carrying Opposing Gradients Of Decellularized Cartilage And Demineralized Bone Matrix.
ACS Biomater Sci Eng. 2017 Sep 11;3(9):1955-1963. doi: 10.1021/acsbiomaterials.6b00071. Epub 2016 Jun 23.
3
Mineral Distribution Spatially Patterns Bone Marrow Stromal Cell Behavior on Monolithic Bone Scaffolds.
Acta Biomater. 2020 Aug;112:274-285. doi: 10.1016/j.actbio.2020.05.032. Epub 2020 May 30.
4
Microsphere-Based Scaffolds in Regenerative Engineering.
Annu Rev Biomed Eng. 2017 Jun 21;19:135-161. doi: 10.1146/annurev-bioeng-071516-044712.
5
Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage.
J Biomater Appl. 2016 Sep;31(3):328-43. doi: 10.1177/0885328216655469. Epub 2016 Jun 29.
6
Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.
J Mater Sci Mater Med. 2016 Jul;27(7):121. doi: 10.1007/s10856-016-5734-1. Epub 2016 Jun 7.
7
Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep.
Regen Med. 2015;10(6):709-28. doi: 10.2217/rme.15.38. Epub 2015 Sep 29.
8
Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate.
Front Bioeng Biotechnol. 2015 Jul 1;3:96. doi: 10.3389/fbioe.2015.00096. eCollection 2015.
9
Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering.
PLoS One. 2015 May 12;10(5):e0121966. doi: 10.1371/journal.pone.0121966. eCollection 2015.

本文引用的文献

2
Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces.
Ann Biomed Eng. 2010 Jun;38(6):2121-41. doi: 10.1007/s10439-010-0033-3. Epub 2010 Apr 22.
3
Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals.
Ann Biomed Eng. 2010 Jun;38(6):2167-82. doi: 10.1007/s10439-010-0028-0. Epub 2010 Apr 9.
6
Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula.
Acta Biomater. 2010 Apr;6(4):1569-74. doi: 10.1016/j.actbio.2009.10.050. Epub 2009 Nov 5.
9
Engineering functionally graded tissue engineering scaffolds.
J Mech Behav Biomed Mater. 2008 Apr;1(2):140-52. doi: 10.1016/j.jmbbm.2007.11.002. Epub 2007 Nov 17.
10
An injectable scaffold: rhBMP-2-loaded poly(lactide-co-glycolide)/hydroxyapatite composite microspheres.
Acta Biomater. 2010 Feb;6(2):455-65. doi: 10.1016/j.actbio.2009.07.016. Epub 2009 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验