Suppr超能文献

使用生物活性信号的宏观梯度进行软骨-骨界面组织工程。

Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals.

机构信息

Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA.

出版信息

Ann Biomed Eng. 2010 Jun;38(6):2167-82. doi: 10.1007/s10439-010-0028-0. Epub 2010 Apr 9.

Abstract

Continuous gradients exist at osteochondral interfaces, which may be engineered by applying spatially patterned gradients of biological cues. In the present study, a protein-loaded microsphere-based scaffold fabrication strategy was applied to achieve spatially and temporally controlled delivery of bioactive signals in three-dimensional (3D) tissue engineering scaffolds. Bone morphogenetic protein-2 and transforming growth factor-beta(1)-loaded poly(D,L-lactic-co-glycolic acid) microspheres were utilized with a gradient scaffold fabrication technology to produce microsphere-based scaffolds containing opposing gradients of these signals. Constructs were then seeded with human bone marrow stromal cells (hBMSCs) or human umbilical cord mesenchymal stromal cells (hUCMSCs), and osteochondral tissue regeneration was assessed in gradient scaffolds and compared to multiple control groups. Following a 6-week cell culture, the gradient scaffolds produced regionalized extracellular matrix, and outperformed the blank control scaffolds in cell number, glycosaminoglycan production, collagen content, alkaline phosphatase activity, and in some instances, gene expression of major osteogenic and chondrogenic markers. These results suggest that engineered signal gradients may be beneficial for osteochondral tissue engineering.

摘要

在骨软骨界面存在连续梯度,通过施加空间图案化的生物信号梯度,可以对其进行工程设计。在本研究中,应用载蛋白微球的支架制造策略来实现三维组织工程支架中生物活性信号的时空控制释放。将骨形态发生蛋白 2 和转化生长因子-β 1 负载于聚(D,L-乳酸-co-乙醇酸)微球中,并利用梯度支架制造技术制造包含这些信号相反梯度的载蛋白微球支架。然后将人骨髓基质细胞(hBMSCs)或人脐带间充质基质细胞(hUCMSCs)接种到构建体中,并在梯度支架中评估骨软骨组织再生情况,并与多个对照组进行比较。经过 6 周的细胞培养,梯度支架产生了区域化的细胞外基质,在细胞数量、糖胺聚糖产生、胶原含量、碱性磷酸酶活性等方面,以及在某些情况下,主要成骨和软骨形成标志物的基因表达方面,都优于空白对照组支架。这些结果表明,工程化信号梯度可能有益于骨软骨组织工程。

相似文献

1
Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals.
Ann Biomed Eng. 2010 Jun;38(6):2167-82. doi: 10.1007/s10439-010-0028-0. Epub 2010 Apr 9.
2
Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering.
J Control Release. 2009 Mar 4;134(2):81-90. doi: 10.1016/j.jconrel.2008.10.021. Epub 2008 Nov 17.
3
The potential of encapsulating "raw materials" in 3D osteochondral gradient scaffolds.
Biotechnol Bioeng. 2014 Apr;111(4):829-41. doi: 10.1002/bit.25145. Epub 2013 Nov 30.
5
Spatially Regulated Multiphenotypic Differentiation of Stem Cells in 3D via Engineered Mechanical Gradient.
ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45479-45488. doi: 10.1021/acsami.9b17266. Epub 2019 Nov 25.
8
Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering.
J Tissue Eng Regen Med. 2011 Oct;5(9):712-21. doi: 10.1002/term.370. Epub 2010 Dec 30.
10
Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds.
Tissue Eng Part A. 2010 Dec;16(12):3709-18. doi: 10.1089/ten.TEA.2010.0190. Epub 2010 Sep 6.

引用本文的文献

1
Scaffold-Based Tissue Engineering Strategies for Osteochondral Repair.
Front Bioeng Biotechnol. 2022 Jan 11;9:812383. doi: 10.3389/fbioe.2021.812383. eCollection 2021.
2
PEOT/PBT Polymeric Pastes to Fabricate Additive Manufactured Scaffolds for Tissue Engineering.
Front Bioeng Biotechnol. 2021 Sep 14;9:704185. doi: 10.3389/fbioe.2021.704185. eCollection 2021.
3
Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges.
Bioact Mater. 2021 May 28;6(12):4830-4855. doi: 10.1016/j.bioactmat.2021.05.011. eCollection 2021 Dec.
4
Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration.
J Funct Morphol Kinesiol. 2021 Jan 5;6(1):6. doi: 10.3390/jfmk6010006.
5
Microsphere-Based Osteochondral Scaffolds Carrying Opposing Gradients Of Decellularized Cartilage And Demineralized Bone Matrix.
ACS Biomater Sci Eng. 2017 Sep 11;3(9):1955-1963. doi: 10.1021/acsbiomaterials.6b00071. Epub 2016 Jun 23.
10
Development of Modular, Dual-Perfused Osteochondral Constructs for Cartilage Repair.
Tissue Eng Part C Methods. 2019 Mar;25(3):127-136. doi: 10.1089/ten.TEC.2018.0356.

本文引用的文献

2
Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds.
Tissue Eng Part A. 2010 Jun;16(6):1937-48. doi: 10.1089/ten.TEA.2009.0706.
4
Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate-chitosan-biodegradable fiber scaffolds.
Biomaterials. 2010 Feb;31(5):840-7. doi: 10.1016/j.biomaterials.2009.09.106. Epub 2009 Oct 21.
7
An injectable scaffold: rhBMP-2-loaded poly(lactide-co-glycolide)/hydroxyapatite composite microspheres.
Acta Biomater. 2010 Feb;6(2):455-65. doi: 10.1016/j.actbio.2009.07.016. Epub 2009 Jul 15.
10
In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells.
Biomaterials. 2009 May;30(14):2741-52. doi: 10.1016/j.biomaterials.2009.01.048. Epub 2009 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验