Suppr超能文献

破坏和补充硒代半胱氨酸生物合成途径揭示了古菌 Methanococcus maripaludis 中硒蛋白基因表达的层次结构。

Disruption and complementation of the selenocysteine biosynthesis pathway reveals a hierarchy of selenoprotein gene expression in the archaeon Methanococcus maripaludis.

机构信息

Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.

出版信息

Mol Microbiol. 2011 Nov;82(3):734-47. doi: 10.1111/j.1365-2958.2011.07850.x. Epub 2011 Oct 12.

Abstract

Proteins containing selenocysteine are found in members of all three domains of life, Bacteria, Eukarya and Archaea. A dedicated tRNA (tRNA(sec)) serves as a scaffold for selenocysteine synthesis. However, sequence and secondary structures differ in tRNA(sec) from the different domains. An Escherichia coli strain lacking the gene for tRNA(sec) could only be complemented with the homologue from Methanococcus maripaludis when a single base in the anticodon loop was exchanged demonstrating that this base is a crucial determinant for archaeal tRNA(sec) to function in E. coli. Complementation in trans of M. maripaludis JJ mutants lacking tRNA(sec) , O-phosphoseryl-tRNA(sec) kinase or O-phosphoseryl-tRNA(sec) :selenocysteine synthase with the corresponding genes from M. maripaludis S2 restored the mutant's ability to synthesize selenoproteins. However, only partial restoration of the wild-type selenoproteome was observed as only selenocysteine-containing formate dehydrogenase was synthesized. Quantification of transcripts showed that disrupting the pathway of selenocysteine synthesis leads to downregulation of selenoprotein gene expression, concomitant with upregulation of a selenium-independent backup system, which is not re-adjusted upon complementation. This transcriptional arrest was independent of selenophosphate but depended on the 'history' of the mutants and was inheritable, which suggests that a stable genetic switch may cause the resulting hierarchy of selenoproteins synthesized.

摘要

含有硒代半胱氨酸的蛋白质存在于生命的三个域,细菌、真核生物和古菌的成员中。一种专门的 tRNA(tRNA(sec))作为硒代半胱氨酸合成的支架。然而,在 tRNA(sec)中,序列和二级结构在不同的域中存在差异。缺乏 tRNA(sec)基因的大肠杆菌菌株只能用来自 Methanococcus maripaludis 的同源物进行互补,当反密码环中的单个碱基被交换时,证明该碱基是古菌 tRNA(sec)在大肠杆菌中发挥功能的关键决定因素。用来自 Methanococcus maripaludis S2 的相应基因在 trans 中互补 M. maripaludis JJ 突变体缺乏 tRNA(sec)、O-磷酸丝氨酸-tRNA(sec)激酶或 O-磷酸丝氨酸-tRNA(sec):硒代半胱氨酸合成酶,可以恢复突变体合成硒蛋白的能力。然而,只观察到野生型硒蛋白组的部分恢复,因为只合成了含有硒代半胱氨酸的甲酸盐脱氢酶。转录物的定量表明,破坏硒代半胱氨酸合成途径会导致硒蛋白基因表达的下调,同时伴随着非硒依赖的备份系统的上调,而在互补时不会重新调整。这种转录停滞不依赖于硒代磷酸盐,但依赖于突变体的“历史”,并且是可遗传的,这表明一个稳定的遗传开关可能导致合成的硒蛋白的层次结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验