Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
J Chem Phys. 2011 Oct 7;135(13):134113. doi: 10.1063/1.3645181.
Marcus theory of electron transfer (ET) and Förster theory of excitation energy transfer (EET) rely on the Condon approximation and the theoretical availability of initial and final states of ET and EET reactions, often called diabatic states. Recently [Subotnik et al., J. Chem. Phys. 130, 234102 (2009)], diabatic states for practical calculations of ET and EET reactions were defined in terms of their interactions with the surrounding environment. However, from a purely theoretical standpoint, the definition of diabatic states must arise from the minimization of the dynamic couplings between the trial diabatic states. In this work, we show that if the Condon approximation is valid, then a minimization of the derived dynamic couplings leads to corresponding diabatic states for ET reactions taking place in solution by diagonalization of the dipole moment matrix, which is equivalent to a Boys localization algorithm; while for EET reactions in solution, diabatic states are found through the Edmiston-Ruedenberg localization algorithm. In the derivation, we find interesting expressions for the environmental contribution to the dynamic coupling of the adiabatic states in condensed-phase processes. In one of the cases considered, we find that such a contribution is trivially evaluable as a scalar product of the transition dipole moment with a quantity directly derivable from the geometry arrangement of the nuclei in the molecular environment. Possibly, this has applications in the evaluation of dynamic couplings for large scale simulations.
马库斯电子转移(ET)理论和福斯特激发能量转移(EET)理论依赖于康顿近似和 ET 和 EET 反应的初始和最终态的理论可用性,通常称为非绝热态。最近[Subotnik 等人,J. Chem. Phys. 130, 234102 (2009)],在实际计算 ET 和 EET 反应时,非绝热态是根据它们与周围环境的相互作用来定义的。然而,从纯粹的理论角度来看,非绝热态的定义必须源于试探非绝热态之间的动态耦合的最小化。在这项工作中,我们表明,如果康顿近似成立,那么通过对角化偶极矩矩阵(相当于博伊斯定位算法)来最小化衍生的动态耦合,将导致在溶液中发生的 ET 反应的相应非绝热态;而对于溶液中的 EET 反应,则通过 Edmiston-Ruedenberg 定位算法找到非绝热态。在推导过程中,我们发现了有趣的表达式,用于表示凝聚相过程中绝热态的环境对动态耦合的贡献。在考虑的一种情况下,我们发现这种贡献可以作为过渡偶极矩与直接从分子环境中核的几何排列推导出来的量的标量积来简单地评估。可能,这在评估大规模模拟的动态耦合方面有应用。