Suppr超能文献

小波图像和 Chou 的伪氨基酸组成用于蛋白质分类。

Wavelet images and Chou's pseudo amino acid composition for protein classification.

机构信息

Department of Information Engineering, University of Padua, Via Gradenigo 6, 35131 Padova, Italy.

出版信息

Amino Acids. 2012 Aug;43(2):657-65. doi: 10.1007/s00726-011-1114-9. Epub 2011 Oct 13.

Abstract

The last decade has seen an explosion in the collection of protein data. To actualize the potential offered by this wealth of data, it is important to develop machine systems capable of classifying and extracting features from proteins. Reliable machine systems for protein classification offer many benefits, including the promise of finding novel drugs and vaccines. In developing our system, we analyze and compare several feature extraction methods used in protein classification that are based on the calculation of texture descriptors starting from a wavelet representation of the protein. We then feed these texture-based representations of the protein into an Adaboost ensemble of neural network or a support vector machine classifier. In addition, we perform experiments that combine our feature extraction methods with a standard method that is based on the Chou's pseudo amino acid composition. Using several datasets, we show that our best approach outperforms standard methods. The Matlab code of the proposed protein descriptors is available at http://bias.csr.unibo.it/nanni/wave.rar .

摘要

过去十年中,蛋白质数据的收集呈爆炸式增长。为了挖掘这些数据的巨大潜力,开发能够对蛋白质进行分类和提取特征的机器系统至关重要。可靠的蛋白质分类机器系统具有许多优势,包括发现新型药物和疫苗的可能性。在开发我们的系统时,我们分析和比较了几种基于从蛋白质的小波表示计算纹理描述符的蛋白质分类中使用的特征提取方法。然后,我们将这些基于纹理的蛋白质表示输入到基于神经网络的 Adaboost 集成或支持向量机分类器中。此外,我们还进行了实验,将我们的特征提取方法与基于 Chou 的伪氨基酸组成的标准方法相结合。使用多个数据集,我们表明我们的最佳方法优于标准方法。所提出的蛋白质描述符的 Matlab 代码可在 http://bias.csr.unibo.it/nanni/wave.rar 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验