Suppr超能文献

起搏大鼠心室肌细胞胞浆和线粒体 [ca] 的计算模型。

A computational model of cytosolic and mitochondrial [ca] in paced rat ventricular myocytes.

机构信息

National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.

出版信息

Korean J Physiol Pharmacol. 2011 Aug;15(4):217-39. doi: 10.4196/kjpp.2011.15.4.217. Epub 2011 Aug 31.

Abstract

We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial Ca(2+) transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [Ca(2+)] bigger in mitochondria as well as in cytosol. As L-type Ca(2+) channel has key influence on the amplitude of Ca(2+)-induced Ca(2+) release, the relation between stimulus frequency and the amplitude of Ca(2+) transients was examined under the low density (1/10 of control) of L-type Ca(2+) channel in model simulation, where the relation was reversed. In experiment, block of Ca(2+) uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial Ca(2+) transients, while it failed to affect the cytosolic Ca(2+) transients. In computer simulation, the amplitude of cytosolic Ca(2+) transients was not affected by removal of Ca(2+) uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [Ca(2+)] in cytosol and eventually abolished the Ca(2+) transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type Ca(2+) channel to total transsarcolemmal Ca(2+) flux could determine whether the cytosolic Ca(2+) transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic Ca(2+) affects mitochondrial Ca(2+) in a beat-to-beat manner, however, removal of Ca(2+) influx mechanism into mitochondria does not affect the amplitude of cytosolic Ca(2+) transients.

摘要

我们进行了一系列实验,旨在研究线粒体在细胞质和线粒体钙瞬变中的作用,并将结果与计算机模拟进行比较。在大鼠心室肌细胞中,增加刺激频率(1~3 Hz)会使线粒体和细胞质中的舒张期和收缩期[Ca(2+)]都增大。由于 L 型钙通道对钙诱导钙释放的幅度有重要影响,因此在模型模拟中,当 L 型钙通道的密度降低(为对照的 1/10)时,我们研究了刺激频率与钙瞬变幅度之间的关系,发现这种关系发生了反转。在实验中,阻断线粒体内膜上的钙单向转运体显著降低了线粒体钙瞬变的幅度,而对细胞质钙瞬变没有影响。在计算机模拟中,去除钙单向转运体对细胞质钙瞬变的幅度没有影响。已知作为质子载体的羰基氰化物 4-(三氟甲氧基)苯腙(FCCP)应用于大鼠心室肌细胞,逐渐增加细胞质中的舒张期[Ca(2+)],最终使钙瞬变消失,这在计算机模拟中也得到了类似的重现。模型研究表明,L 型钙通道对总跨肌细胞膜钙通量的相对贡献可以决定细胞质钙瞬变是否随着刺激频率的增加而增大或减小。本研究还表明,细胞质 Ca(2+)以逐拍的方式影响线粒体 Ca(2+),然而,去除 Ca(2+)进入线粒体的流入机制并不影响细胞质 Ca(2+)瞬变的幅度。

相似文献

1
A computational model of cytosolic and mitochondrial [ca] in paced rat ventricular myocytes.
Korean J Physiol Pharmacol. 2011 Aug;15(4):217-39. doi: 10.4196/kjpp.2011.15.4.217. Epub 2011 Aug 31.
2
Visualization of Dynamic Mitochondrial Calcium Fluxes in Isolated Cardiomyocytes.
Front Physiol. 2022 Jan 24;12:808798. doi: 10.3389/fphys.2021.808798. eCollection 2021.
3
Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes.
Am J Physiol Cell Physiol. 2006 Nov;291(5):C840-50. doi: 10.1152/ajpcell.00619.2005. Epub 2006 May 24.
4
Effects of mitochondrial uncoupling on Ca(2+) signaling during excitation-contraction coupling in atrial myocytes.
Am J Physiol Heart Circ Physiol. 2013 Apr 1;304(7):H983-93. doi: 10.1152/ajpheart.00932.2012. Epub 2013 Feb 1.
5
'Pressure-flow'-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria.
J Physiol. 2008 Mar 1;586(5):1379-97. doi: 10.1113/jphysiol.2007.149294. Epub 2008 Jan 10.
6
Effects of acidosis on resting cytosolic and mitochondrial Ca2+ in mammalian myocardium.
J Gen Physiol. 1993 Sep;102(3):575-97. doi: 10.1085/jgp.102.3.575.
8
Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
Ann N Y Acad Sci. 2008 Mar;1123:58-63. doi: 10.1196/annals.1420.007.
10
Mitochondria regulate inactivation of L-type Ca2+ channels in rat heart.
J Physiol. 2001 Oct 15;536(Pt 2):387-96. doi: 10.1111/j.1469-7793.2001.0387c.xd.

引用本文的文献

1
Defective mitochondrial function and motility due to mitofusin 1 overexpression in insulin secreting cells.
Korean J Physiol Pharmacol. 2012 Feb;16(1):71-7. doi: 10.4196/kjpp.2012.16.1.71. Epub 2012 Feb 28.

本文引用的文献

1
The dynamics of mitochondrial Ca2+ fluxes.
Biochim Biophys Acta. 2010 Oct;1797(10):1727-35. doi: 10.1016/j.bbabio.2010.06.008. Epub 2010 Jun 25.
2
Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes.
J Mol Cell Cardiol. 2009 Jun;46(6):1027-36. doi: 10.1016/j.yjmcc.2009.03.015. Epub 2009 Apr 1.
3
Mitochondrial free [Ca2+] levels and the permeability transition.
Cell Calcium. 2009 Mar;45(3):243-50. doi: 10.1016/j.ceca.2008.10.007. Epub 2008 Dec 18.
6
A mathematical model of the slow force response to stretch in rat ventricular myocytes.
Biophys J. 2007 Jun 1;92(11):4030-44. doi: 10.1529/biophysj.106.095463. Epub 2007 Mar 16.
7
Mitochondrial Ca2+-activated K+ channels more efficiently reduce mitochondrial Ca2+ overload in rat ventricular myocytes.
Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H307-13. doi: 10.1152/ajpheart.00789.2006. Epub 2007 Mar 9.
8
Effect of Ca2+ on cardiac mitochondrial energy production is modulated by Na+ and H+ dynamics.
Am J Physiol Cell Physiol. 2007 Jun;292(6):C2004-20. doi: 10.1152/ajpcell.00271.2006. Epub 2007 Mar 7.
9
Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation.
Cardiovasc Res. 2006 Nov 1;72(2):313-21. doi: 10.1016/j.cardiores.2006.07.019. Epub 2006 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验