Suppr超能文献

解偶联对心房肌细胞兴奋-收缩耦联过程中 Ca(2+)信号的影响。

Effects of mitochondrial uncoupling on Ca(2+) signaling during excitation-contraction coupling in atrial myocytes.

机构信息

Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2013 Apr 1;304(7):H983-93. doi: 10.1152/ajpheart.00932.2012. Epub 2013 Feb 1.

Abstract

Mitochondria play an important role in intracellular Ca(2+) concentration ([Ca(2+)]i) regulation in the heart. We studied sarcoplasmic reticulum (SR) Ca(2+) release in cat atrial myocytes during depolarization of mitochondrial membrane potential (ΔΨm) induced by the protonophore FCCP. FCCP caused an initial decrease of action potential-induced Ca(2+) transient amplitude and frequency of spontaneous Ca(2+) waves followed by partial recovery despite partially depleted SR Ca(2+) stores. In the presence of oligomycin, FCCP only exerted a stimulatory effect on Ca(2+) transients and Ca(2+) wave frequency, suggesting that the inhibitory effect of FCCP was mediated by ATP consumption through reverse-mode operation of mitochondrial F1F0-ATPase. ΔΨm depolarization was accompanied by cytosolic acidification, increases of diastolic [Ca(2+)]i, intracellular Na(+) concentration ([Na(+)]i), and intracellular Mg(2+) concentration ([Mg(2+)]i), and a decrease of intracellular ATP concentration ([ATP]i); however, glycolytic ATP production partially compensated for the exhaustion of mitochondrial ATP supplies. In conclusion, the initial inhibition of Ca(2+) transients and waves resulted from suppression of ryanodine receptor SR Ca(2+) release channel activity by a decrease in [ATP], an increase of [Mg(2+)]i, and cytoplasmic acidification. The later stimulation resulted from reduced mitochondrial Ca(2+) buffering and cytosolic Na(+) and Ca(2+) accumulation, leading to enhanced Ca(2+)-induced Ca(2+) release and spontaneous Ca(2+) release in the form of Ca(2+) waves. ΔΨm depolarization and the ensuing consequences of mitochondrial uncoupling observed here (intracellular acidification, decrease of [ATP]i, increase of [Na(+)]i and [Mg(2+)]i, and Ca(2+) overload) are hallmarks of ischemia. These findings may therefore provide insight into the consequences of mitochondrial uncoupling for ion homeostasis, SR Ca(2+) release, and excitation-contraction coupling in ischemia at the cellular and subcellular level.

摘要

线粒体在心脏细胞内钙离子浓度([Ca(2+)]i)调节中发挥重要作用。我们研究了质子载体 FCCP 去极化线粒体膜电位(ΔΨm)时猫心房肌细胞肌浆网(SR)Ca(2+)释放。FCCP 导致动作电位诱导的 Ca(2+)瞬变幅度和自发性 Ca(2+)波频率的初始降低,随后尽管 SR Ca(2+)储存部分耗竭,但部分恢复。在寡霉素存在的情况下,FCCP 仅对 Ca(2+)瞬变和 Ca(2+)波频率产生刺激作用,表明 FCCP 的抑制作用是通过线粒体 F1F0-ATP 酶反向模式的 ATP 消耗介导的。ΔΨm 去极化伴随着胞质酸化、舒张期[Ca(2+)]i、细胞内 Na(+)浓度([Na(+)]i)和细胞内 Mg(2+)浓度([Mg(2+)]i)增加,以及细胞内 ATP 浓度([ATP]i)降低;然而,糖酵解 ATP 产生部分补偿了线粒体 ATP 供应的耗尽。总之,初始 Ca(2+)瞬变和波的抑制是由于[ATP]降低、[Mg(2+)]i增加和胞质酸化抑制了肌浆网 Ca(2+)释放通道活性所致。随后的刺激是由于线粒体 Ca(2+)缓冲减少和胞质 Na(+)和 Ca(2+)积累,导致 Ca(2+)诱导的 Ca(2+)释放和以 Ca(2+)波形式的自发性 Ca(2+)释放增强。这里观察到的 ΔΨm 去极化和随后的线粒体解偶联的后果(细胞内酸化、[ATP]i 降低、[Na(+)]i 和 [Mg(2+)]i 增加以及 Ca(2+)过载)是缺血的特征。这些发现可能为线粒体解偶联对离子稳态、SR Ca(2+)释放和缺血时兴奋-收缩偶联的细胞和亚细胞水平的影响提供了深入了解。

相似文献

1
Effects of mitochondrial uncoupling on Ca(2+) signaling during excitation-contraction coupling in atrial myocytes.
Am J Physiol Heart Circ Physiol. 2013 Apr 1;304(7):H983-93. doi: 10.1152/ajpheart.00932.2012. Epub 2013 Feb 1.
2
Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts.
J Physiol. 2015 Mar 15;593(6):1459-77. doi: 10.1113/jphysiol.2014.283226. Epub 2014 Dec 22.
4
Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes.
PLoS One. 2013 Nov 7;8(11):e80574. doi: 10.1371/journal.pone.0080574. eCollection 2013.
5
Uncoupling protein-2 modulates myocardial excitation-contraction coupling.
Circ Res. 2010 Mar 5;106(4):730-8. doi: 10.1161/CIRCRESAHA.109.206631. Epub 2010 Jan 7.
6
Bidirectional Ca2+ coupling of mitochondria with the endoplasmic reticulum and regulation of multimodal Ca2+ entries in rat brown adipocytes.
Am J Physiol Cell Physiol. 2007 Feb;292(2):C896-908. doi: 10.1152/ajpcell.00649.2005. Epub 2006 Sep 20.
7
Modulation of sarcoplasmic reticulum Ca2+ release by glycolysis in cat atrial myocytes.
J Physiol. 2005 May 1;564(Pt 3):697-714. doi: 10.1113/jphysiol.2004.078782. Epub 2005 Feb 3.
9
Local Ca coupling between mitochondria and sarcoplasmic reticulum following depolarization in guinea pig urinary bladder smooth muscle cells.
Am J Physiol Cell Physiol. 2018 Jan 1;314(1):C88-C98. doi: 10.1152/ajpcell.00208.2017. Epub 2017 Oct 18.
10
Effect of carvedilol on atrial excitation-contraction coupling, Ca release, and arrhythmogenicity.
Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1245-H1255. doi: 10.1152/ajpheart.00650.2019. Epub 2020 Apr 10.

引用本文的文献

1
Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease.
Physiology (Bethesda). 2024 Sep 1;39(5):0. doi: 10.1152/physiol.00014.2024. Epub 2024 May 7.
2
Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes.
Biomolecules. 2024 Jan 24;14(2):144. doi: 10.3390/biom14020144.
4
Mechanism of Blood-Heart-Barrier Leakage: Implications for COVID-19 Induced Cardiovascular Injury.
Int J Mol Sci. 2021 Dec 17;22(24):13546. doi: 10.3390/ijms222413546.
6
Implications of SGLT Inhibition on Redox Signalling in Atrial Fibrillation.
Int J Mol Sci. 2021 May 31;22(11):5937. doi: 10.3390/ijms22115937.
7
Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants.
Antioxidants (Basel). 2021 May 11;10(5):760. doi: 10.3390/antiox10050760.
8
Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia.
J Mol Cell Cardiol. 2021 Jul;156:105-113. doi: 10.1016/j.yjmcc.2021.04.002. Epub 2021 Apr 17.
9
Cellular and mitochondrial mechanisms of atrial fibrillation.
Basic Res Cardiol. 2020 Nov 30;115(6):72. doi: 10.1007/s00395-020-00827-7.
10
Mitochondrial calcium uniporter complex activation protects against calcium alternans in atrial myocytes.
Am J Physiol Heart Circ Physiol. 2020 Oct 1;319(4):H873-H881. doi: 10.1152/ajpheart.00375.2020. Epub 2020 Aug 28.

本文引用的文献

1
Regulation of cardiac alternans by β-adrenergic signaling pathways.
Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H1047-56. doi: 10.1152/ajpheart.00384.2012. Epub 2012 Aug 17.
2
Ryanodine receptor physiology and its role in disease.
Adv Exp Med Biol. 2012;740:217-34. doi: 10.1007/978-94-007-2888-2_9.
3
Mitochondria and heart disease.
Adv Exp Med Biol. 2012;942:249-67. doi: 10.1007/978-94-007-2869-1_11.
4
Measuring mitochondrial function in intact cardiac myocytes.
J Mol Cell Cardiol. 2012 Jan;52(1):48-61. doi: 10.1016/j.yjmcc.2011.08.030. Epub 2011 Sep 22.
5
Mitochondrial Ca2+ uptake: tortoise or hare?
J Mol Cell Cardiol. 2009 Jun;46(6):767-74. doi: 10.1016/j.yjmcc.2008.12.011. Epub 2008 Dec 31.
6
Mitochondrial Ca2+ and the heart.
Cell Calcium. 2008 Jul;44(1):77-91. doi: 10.1016/j.ceca.2007.11.002. Epub 2008 Feb 21.
7
Mitochondria and cardioprotection.
Heart Fail Rev. 2007 Dec;12(3-4):249-60. doi: 10.1007/s10741-007-9028-z.
8
Role of glycolytically generated ATP for CaMKII-mediated regulation of intracellular Ca2+ signaling in bovine vascular endothelial cells.
Am J Physiol Cell Physiol. 2007 Jul;293(1):C106-18. doi: 10.1152/ajpcell.00543.2006. Epub 2007 Mar 7.
9
Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion.
Am J Physiol Cell Physiol. 2007 Jan;292(1):C137-47. doi: 10.1152/ajpcell.00270.2006. Epub 2006 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验