Leung Kam
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD
Dopamine, a neurotransmitter, plays an important role in the mediation of movement, cognition, and emotion (1, 2). Dopamine receptors are involved in the pathophysiology of neuropsychiatric diseases, such as Parkinson’s disease, Alzheimer's disease, Huntington’s disease, and schizophrenia (3). Five subtypes of dopamine receptors, D through D, have been well characterized pharmacologically and biochemically . These five subtypes are classified into two subfamilies: D-like (D and D) and D-like (D, D, and D) dopamine receptors. D-Like and D-like receptors exert synergistic as well as opposite effects at both the biochemical and overall system levels. A great majority of striatal D and D receptors are localized postsynaptically on caudate-putamen neurons and to a lesser extent presynaptically on nigrostriatal axons. Dopamine receptors are G-protein–coupled receptors and exist in high- and low-affinity states with respect to agonist binding (4). The two states are interconvertible. The high-affinity state is coupled to G-proteins, whereas the low-affinity state is not. Dopamine has a dissociation constant () of 7 nM for the high-affinity state () and a of 1,720 nM for the low-affinity state () (5). Under physiological conditions, dopamine is expected to bind predominantly to the high-affinity state, which is ~50% occupied by 10 nM dopamine. The high-affinity state is suggested to be the functional form of the dopamine receptors. Substituted benzamides, such as sulpiride, raclopride, and iodobenzamide, are specific ligands with only moderate affinity for the D receptors, making studies of extrastriatal D receptors difficult (6-8). In binding studies, I-labeled epidepride, an analog of isoremoxipride, was found to have high potency and low nonspecific binding and to be selective for striatal and extrastriatal D receptors (9). Epidepride has marginal binding to D receptors, with little affinity for other known neurotransmitter receptors. ()--((1-Allyl-2-pyrrolidinyl)methyl)-5-(3-[F]fluoropropyl)-2,3-dimethoxybenzamide ([F]fallypride), an analog of epidepride, was found to be a selective, high-affinity antagonist of D receptors in positron emission tomography (PET) studies (10-13). [F]Fallypride identified extrastriatal D receptors. However, none of these antagonists distinguish between the high- and low-affinity states of the D receptors. (-)--Propyl-norapomorphine (NPA) is reported to have and values of 0.07–0.4 and 20–200 nM, respectively (3, 4, 14, 15). This provides a >50-fold selectivity for the high-affinity over the low-affinity receptors. NPA has good affinity (, 0.3 nM) for D receptors but not for other neurotransmitters (16). [C]NPA is being developed as a PET agent for the noninvasive study of the high-affinity state of the D receptors in the brain. Because of high D receptor expression in the limbic structures of the brain and possible involvement of striatal D receptors in the pathophysiology of dystonia, there is a need for D-selective probes. ()-(-)-2-Chloro--[1-C-propyl]-propylnorapomorphine (2-Cl-[C]-(-)-NPA) has been evaluated as a D-selective probe because 2-Cl-(-)-NPA showed a higher selectivity for D than for D (D D, 3.85) than did (-)-NPA (D D, 1.75) (17). However, 2-Cl-[C]-(-)-NPA is less likely to be a useful PET agent for D receptors because of its slow brain uptake and low striatum/cerebellum ratio. Mach et al. (18) have reported the development of -(4-(4-(2-(2-[F]fluoroethoxy)phenyl)piperazine-1-yl)butyl)-4-(3-thienyl)benzamide ([F]5), a D partial agonist, for PET imaging of D receptors. Compound 5 showed ~162-fold selectivity for D over D.
多巴胺作为一种神经递质,在运动、认知和情感调节中发挥着重要作用(1, 2)。多巴胺受体参与神经精神疾病的病理生理过程,如帕金森病、阿尔茨海默病、亨廷顿病和精神分裂症(3)。多巴胺受体的五种亚型,即D₁至D₅,已在药理学和生物化学方面得到充分表征。这五种亚型分为两个亚家族:D₁样(D₁和D₅)和D₂样(D₂、D₃和D₄)多巴胺受体。D₁样和D₂样受体在生化和整体系统水平上均发挥协同以及相反的作用。绝大多数纹状体D₁和D₂受体位于尾状核 - 壳核神经元的突触后,在黑质纹状体轴突的突触前也有少量分布。多巴胺受体是G蛋白偶联受体,就激动剂结合而言存在高亲和力和低亲和力两种状态(4)。这两种状态是可以相互转换的。高亲和力状态与G蛋白偶联,而低亲和力状态则不然。多巴胺对高亲和力状态(Kₐ)的解离常数(Kd)为7 nM,对低亲和力状态(Kᵢ)的Kd为1720 nM(5)。在生理条件下,多巴胺预计主要与高亲和力状态结合,10 nM多巴胺可占据约50%的高亲和力状态。高亲和力状态被认为是多巴胺受体的功能形式。取代苯甲酰胺,如舒必利、雷氯必利和碘苯酰胺,是对D₂受体具有中等亲和力的特异性配体,这使得对纹状体以外D₂受体的研究变得困难(6 - 8)。在结合研究中,发现¹²³I标记的表哌立酮(isoremoxipride的类似物)具有高效能和低非特异性结合,并且对纹状体和纹状体以外的D₂受体具有选择性(9)。表哌立酮与D₁受体的结合较弱,对其他已知神经递质受体的亲和力也很小。(+)-[(1 - 烯丙基 - 2 - 吡咯烷基)甲基]-5 - (3 - [¹⁸F]氟丙基)-2,3 - 二甲氧基苯甲酰胺([¹⁸F]法利哌德)是表哌立酮的类似物,在正电子发射断层扫描(PET)研究中被发现是D₂受体的选择性高亲和力拮抗剂(10 - 13)。[¹⁸F]法利哌德可识别纹状体以外的D₂受体。然而,这些拮抗剂均无法区分D₂受体的高亲和力和低亲和力状态。(-)-丙基 - 去甲阿扑吗啡(NPA)据报道其Kₐ和Kᵢ值分别为0.07 - 0.4和20 - 200 nM(3, 4, 14, 15)。这表明其对高亲和力受体的选择性比对低亲和力受体高50倍以上。NPA对D₂受体具有良好的亲和力(Kₐ,0.3 nM),但对其他神经递质没有亲和力(16)。[¹¹C]NPA正在被开发为一种PET试剂,用于对脑中D₂受体的高亲和力状态进行无创研究。由于脑边缘结构中D₂受体的高表达以及纹状体D₂受体可能参与肌张力障碍的病理生理过程,因此需要D₂选择性探针。(±)-(-)-2 - 氯 - α-[¹¹C - 丙基]-丙基去甲阿扑吗啡(2 - Cl - [¹¹C]-(-)-NPA)已被评估为一种D₂选择性探针,因为2 - Cl - (-)-NPA对D₂的选择性高于对D₁的选择性(D₂/D₁,3.85),高于(-)-NPA(D₂/D₁,1.75)(17)。然而,2 - Cl - [¹¹C]-(-)-NPA不太可能成为一种用于D₂受体的有用PET试剂,因为它在脑中的摄取缓慢且纹状体/小脑比值较低。马赫等人(18)报道了一种D₂部分激动剂 - (4 - (4 - (2 - (2 - [¹⁸F]氟乙氧基)phenyl)哌嗪 - 1 - 基)丁基)-4 - (3 - 噻吩基)苯甲酰胺([¹⁸F]5)的开发,用于D₂受体的PET成像。化合物5对D₂的选择性比对D₁高约162倍。