Suppr超能文献

用于电子皮肤应用的有机场效应晶体管的化学和工程方法。

Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

Acc Chem Res. 2012 Mar 20;45(3):361-71. doi: 10.1021/ar2001233. Epub 2011 Oct 13.

Abstract

Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within gas-sensing devices and has enabled stable sensor operation within aqueous media. Furthermore, careful tuning of the chemical composition of the dielectric layer has provided a means to operate the sensor in real time within an aqueous environment and without the need for encapsulation layers. The integration of such devices as electronic mimics of skin will require the incorporation of biocompatible or biodegradable components. Toward this goal, OFETs may be fabricated with >99% biodegradable components by weight, and the devices are robust and stable, even in aqueous environments. Collectively, progress to date suggests that OFETs may be integrated within a single substrate to function as an electronic mimic of human skin, which could enable a large range of sensing-related applications from novel prosthetics to robotic surgery.

摘要

皮肤是人体最大的器官,负责传递大量信息。这种适应性强的材料可以同时收集来自外部刺激的信号,这些信号转化为压力、疼痛和温度等信息。受这种器官复杂性的启发,开发一种电子材料是一个巨大的、尚未实现的工程挑战。然而,碳基电子产品的出现可能为这个长期存在的问题提供了一个潜在的解决方案。在本报告中,我们描述了使用有机场效应晶体管(OFET)结构将机械和化学刺激转换为电信号。在开发这种模仿人类皮肤的器件时,我们将 OFET 的传感元件视为类似于皮肤的各个层和组成部分。通过这种方式,OFET 的每一层都可以优化以执行特定的识别功能。在 OFET 的组件之间实现多模态传感的分离,可以被认为是一种“分而治之”的方法,其中电子皮肤(e-skin)可以利用每一层的优化化学和材料特性。这种新型微结构栅介质的设计导致了对触觉压力事件的前所未有的灵敏度。通常,电子配置中的压力敏感元件存在灵敏度低或与弹性体材料相关的机械弛豫时间长的问题。在我们的方法中,这些元件与 OFET 直接兼容,并实现了迄今为止报道的最高灵敏度。此外,这些触觉传感器的工作时间尺度与人类皮肤相当,使其成为集成作为合成皮肤设备的理想选择。该方法与大规模制造兼容,并采用简单、商业上可获得的弹性体。半导体层内的材料设计导致了气体传感设备中的选择性和灵敏度的结合,并使传感器能够在水介质中稳定运行。此外,对介电层化学成分的仔细调整提供了在水介质中实时操作传感器而无需封装层的手段。此类设备作为皮肤的电子模拟物的集成将需要包含生物相容性或可生物降解的组件。为此,OFET 可以通过重量计包含>99%的可生物降解组件进行制造,并且即使在水环境中,器件也具有鲁棒性和稳定性。迄今为止的进展表明,OFET 可以集成在单个基板上,作为人类皮肤的电子模拟物,这可以实现从新型假肢到机器人手术的各种传感相关应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验