Krupnik Tomas, Sobczak-Elbourne Iwona, Lolkema Juke S
Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
Mol Membr Biol. 2011 Oct-Nov;28(7-8):462-72. doi: 10.3109/09687688.2011.624989. Epub 2011 Oct 13.
GltS of Escherichia coli is a secondary transporter that catalyzes Na+-glutamate symport. The structural model of GltS shows two homologous domains with inverted membrane topology that are connected by a central loop that resides in the cytoplasm. Each domain contains a reentrant loop structure. Accessibility of the Cys residues in two GltS mutants in which Pro351 and Asn356 in the reentrant loop in the C-terminal domain were replaced by Cys is demonstrated to be sensitive to the catalytic state supporting a role for the reentrant loops in catalysis. Saturating concentrations of the substrate L-glutamate protected both mutants against inactivation by thiol reagents, while the presence of the co-ion Na+ stimulated the inactivation of both mutants. Insertion of the 10 kDa biotin acceptor domain (BAD) of oxaloacetate decarboxylase of Klebsiella pneumoniae in the central cytoplasmic loop blocked the access pathway from the periplasmic side of the membrane to the cysteine residues in mutants P351C and N356C in the reentrant loop. Kinetically, insertion of BAD increased the maximal rate of uptake 2.7-fold while leaving the apparent affinity constants for L-glutamate and Na+ unaltered. The data suggests that insertion of BAD in the central loop results in conformational changes at the translocation site that lower the activation energy of the translocation step without affecting the access pathway from the periplasmic side for substrate and co-ions. It is concluded that changes in the central loop that connects the two domains may have a regulatory function on the activity of the transporter.
大肠杆菌的GltS是一种催化Na⁺-谷氨酸同向转运的次级转运蛋白。GltS的结构模型显示,两个具有反向膜拓扑结构的同源结构域通过位于细胞质中的中央环相连。每个结构域都包含一个折返环结构。在两个GltS突变体中,C末端结构域折返环中的Pro351和Asn356被Cys取代,结果表明这些突变体中半胱氨酸残基的可及性对催化状态敏感,这支持了折返环在催化过程中的作用。底物L-谷氨酸的饱和浓度可保护两个突变体免受硫醇试剂的失活作用,而共离子Na⁺的存在则刺激了两个突变体的失活。将肺炎克雷伯菌草酰乙酸脱羧酶的10 kDa生物素受体结构域(BAD)插入中央细胞质环,阻断了从膜周质侧到折返环中突变体P351C和N356C中半胱氨酸残基的通道。在动力学上,BAD的插入使最大摄取速率提高了2.7倍,而L-谷氨酸和Na⁺的表观亲和常数未改变。数据表明,在中央环中插入BAD会导致转运位点的构象变化,从而降低转运步骤的活化能,而不影响底物和共离子从周质侧的通道。得出的结论是,连接两个结构域的中央环的变化可能对转运蛋白的活性具有调节功能。