Suppr超能文献

控制三维细胞外基质中血管管腔形成的分子机制。

Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices.

机构信息

Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, Mo. 65212, USA.

出版信息

Cells Tissues Organs. 2012;195(1-2):122-43. doi: 10.1159/000331410. Epub 2011 Oct 13.

Abstract

Considerable progress has been made toward a molecular understanding of how cells form lumen and tube structures in three-dimensional (3D) extracellular matrices (ECM). This progress has occurred through work performed with endothelial and epithelial cell models using both in vitro and in vivo approaches. Despite the apparent similarities between endothelial and epithelial cell lumen and tube formation mechanisms, there are clear distinctions that directly relate to their functional differences. This review will focus on endothelial cell (EC) lumen formation mechanisms which control blood vessel formation during development and postnatal life. Of great interest is that an EC lumen signaling complex has been identified which controls human EC lumen and tube formation in 3D matrices and which coordinates integrin-ECM contacts, cell surface proteolysis, cytoskeletal rearrangements, and cell polarity. This complex consists of the collagen-binding integrin α2β1, the collagen-degrading membrane-type 1 matrix metalloproteinase (MT1-MMP), junction adhesion molecule (Jam)C, JamB, polarity proteins Par3 and Par6b, and the Rho GTPase Cdc42-GTP. These interacting proteins are necessary to stimulate 3D matrix-specific signaling events (including activation of protein kinase cascades that regulate the actin and microtubule cytoskeletons) to control the formation of EC lumens and tube networks. Also, EC lumen formation is directly coupled to the generation of vascular guidance tunnels, enzymatically generated ECM conduits that facilitate EC tube remodeling and maturation. Mural cells such as pericytes are recruited along EC tubes within these tunnel spaces to control ECM remodeling events resulting in vascular basement membrane matrix assembly, a key step in tube maturation and stabilization.

摘要

在理解细胞如何在三维(3D)细胞外基质(ECM)中形成腔和管状结构方面,已经取得了相当大的进展。这一进展是通过使用内皮细胞和上皮细胞模型,结合体外和体内方法完成的。尽管内皮细胞和上皮细胞腔和管状形成机制之间存在明显的相似之处,但它们之间存在着明显的区别,这些区别直接与它们的功能差异有关。本综述将重点介绍内皮细胞(EC)腔形成机制,这些机制控制着血管在发育和出生后生命过程中的形成。非常有趣的是,已经确定了一个 EC 腔信号复合物,该复合物控制着人类 EC 在 3D 基质中的腔和管状形成,并协调整合素-ECM 接触、细胞表面蛋白水解、细胞骨架重排和细胞极性。该复合物由结合胶原的整合素α2β1、降解胶原的膜型 1 基质金属蛋白酶(MT1-MMP)、连接黏附分子(Jam)C、JamB、极性蛋白 Par3 和 Par6b 以及 Rho GTPase Cdc42-GTP 组成。这些相互作用的蛋白对于刺激 3D 基质特异性信号事件(包括调节肌动蛋白和微管细胞骨架的蛋白激酶级联的激活)以控制 EC 腔和管状网络的形成是必需的。此外,EC 腔的形成与血管导向隧道的生成直接相关,该隧道是酶促生成的 ECM 导管,有助于 EC 管状重塑和成熟。壁细胞,如周细胞,在内皮细胞管内沿着这些隧道空间募集,以控制 ECM 重塑事件,从而导致血管基底膜基质的组装,这是管状成熟和稳定的关键步骤。

相似文献

引用本文的文献

10
PFKFB3: A Potential Key to Ocular Angiogenesis.磷酸果糖激酶-2/果糖-2,6-二磷酸酶3:眼部血管生成的潜在关键因素
Front Cell Dev Biol. 2021 Mar 11;9:628317. doi: 10.3389/fcell.2021.628317. eCollection 2021.

本文引用的文献

1
Angiogenesis.血管生成。
Cold Spring Harb Perspect Biol. 2011 Aug 1;3(8):a005090. doi: 10.1101/cshperspect.a005090.
4
Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling.血管小管生成需要 Rasip1 调节 GTPase 信号。
Dev Cell. 2011 Apr 19;20(4):526-39. doi: 10.1016/j.devcel.2011.02.010. Epub 2011 Mar 10.
5
Molecular regulation of lumen morphogenesis.腔管形态发生的分子调控。
Curr Biol. 2011 Feb 8;21(3):R126-36. doi: 10.1016/j.cub.2010.12.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验