Suppr超能文献

一种用于蛋白质结构预测和模型质量评估的多层评估方法。

A multilayer evaluation approach for protein structure prediction and model quality assessment.

机构信息

Department of Computer Science, University of Missouri, Columbia, MO, USA.

出版信息

Proteins. 2011;79 Suppl 10(Suppl 10):172-84. doi: 10.1002/prot.23184. Epub 2011 Oct 14.

Abstract

Protein tertiary structures are essential for studying functions of proteins at molecular level. An indispensable approach for protein structure solution is computational prediction. Most protein structure prediction methods generate candidate models first and select the best candidates by model quality assessment (QA). In many cases, good models can be produced, but the QA tools fail to select the best ones from the candidate model pool. Because of incomplete understanding of protein folding, each QA method only reflects partial facets of a structure model and thus has limited discerning power with no one consistently outperforming others. In this article, we developed a set of new QA methods, including two QA methods for evaluating target/template alignments, a molecular dynamics (MD)-based QA method, and three consensus QA methods with selected references to reveal new facets of protein structures complementary to the existing methods. Moreover, the underlying relationship among different QA methods were analyzed and then integrated into a multilayer evaluation approach to guide the model generation and model selection in prediction. All methods are integrated and implemented into an innovative and improved prediction system hereafter referred to as MUFOLD. In CASP8 and CASP9, MUFOLD has demonstrated the proof of the principles in terms of both QA discerning power and structure prediction accuracy.

摘要

蛋白质的三级结构对于研究蛋白质在分子水平上的功能至关重要。计算预测是解决蛋白质结构的不可或缺的方法。大多数蛋白质结构预测方法首先生成候选模型,然后通过模型质量评估(QA)选择最佳候选模型。在许多情况下,可以生成良好的模型,但 QA 工具无法从候选模型池中选择最佳模型。由于对蛋白质折叠的理解不完整,每种 QA 方法仅反映结构模型的部分方面,因此具有有限的辨别能力,没有一种方法始终优于其他方法。在本文中,我们开发了一组新的 QA 方法,包括两种用于评估目标/模板对齐的 QA 方法、一种基于分子动力学(MD)的 QA 方法以及三种使用选定参考文献的共识 QA 方法,以揭示与现有方法互补的蛋白质结构的新方面。此外,分析了不同 QA 方法之间的内在关系,然后将其整合到多层评估方法中,以指导预测中的模型生成和模型选择。所有方法都进行了集成并实现到一个创新和改进的预测系统中,此后称为 MUFOLD。在 CASP8 和 CASP9 中,MUFOLD 在 QA 辨别能力和结构预测准确性方面都证明了其原理的正确性。

相似文献

1
A multilayer evaluation approach for protein structure prediction and model quality assessment.
Proteins. 2011;79 Suppl 10(Suppl 10):172-84. doi: 10.1002/prot.23184. Epub 2011 Oct 14.
2
MUFOLD-WQA: A new selective consensus method for quality assessment in protein structure prediction.
Proteins. 2011;79 Suppl 10(Suppl 10):185-95. doi: 10.1002/prot.23185. Epub 2011 Oct 14.
3
Improving a consensus approach for protein structure selection by removing redundancy.
IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov-Dec;8(6):1708-15. doi: 10.1109/TCBB.2011.75.
4
MUFOLD: A new solution for protein 3D structure prediction.
Proteins. 2010 Apr;78(5):1137-52. doi: 10.1002/prot.22634.
6
United3D: a protein model quality assessment program that uses two consensus based methods.
Chem Pharm Bull (Tokyo). 2012;60(11):1359-65. doi: 10.1248/cpb.c12-00287.
7
Prediction of protein tertiary structures using MUFOLD.
Methods Mol Biol. 2012;815:3-13. doi: 10.1007/978-1-61779-424-7_1.
8
Template-based and free modeling by RAPTOR++ in CASP8.
Proteins. 2009;77 Suppl 9(Suppl 9):133-7. doi: 10.1002/prot.22567.
9
A sampling-based method for ranking protein structural models by integrating multiple scores and features.
Curr Protein Pept Sci. 2011 Sep;12(6):540-8. doi: 10.2174/138920311796957658.
10
Selective refinement and selection of near-native models in protein structure prediction.
Proteins. 2015 Oct;83(10):1823-35. doi: 10.1002/prot.24866. Epub 2015 Aug 12.

引用本文的文献

2
Two New Heuristic Methods for Protein Model Quality Assessment.
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jul-Aug;17(4):1430-1439. doi: 10.1109/TCBB.2018.2880202. Epub 2018 Nov 9.
4
Selective refinement and selection of near-native models in protein structure prediction.
Proteins. 2015 Oct;83(10):1823-35. doi: 10.1002/prot.24866. Epub 2015 Aug 12.
5
A computational systems biology study for understanding salt tolerance mechanism in rice.
PLoS One. 2013 Jun 7;8(6):e64929. doi: 10.1371/journal.pone.0064929. Print 2013.

本文引用的文献

1
Evaluation of model quality predictions in CASP9.
Proteins. 2011;79 Suppl 10(Suppl 10):91-106. doi: 10.1002/prot.23180. Epub 2011 Oct 14.
2
MUFOLD: A new solution for protein 3D structure prediction.
Proteins. 2010 Apr;78(5):1137-52. doi: 10.1002/prot.22634.
3
Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments.
Bioinformatics. 2010 Jan 15;26(2):182-8. doi: 10.1093/bioinformatics/btp629. Epub 2009 Nov 6.
4
Assessment of CASP8 structure predictions for template free targets.
Proteins. 2009;77 Suppl 9:50-65. doi: 10.1002/prot.22591.
5
Evaluation of CASP8 model quality predictions.
Proteins. 2009;77 Suppl 9:157-66. doi: 10.1002/prot.22534.
7
Assessment of global and local model quality in CASP8 using Pcons and ProQ.
Proteins. 2009;77 Suppl 9:167-72. doi: 10.1002/prot.22476.
8
Prediction of global and local quality of CASP8 models by MULTICOM series.
Proteins. 2009;77 Suppl 9:181-4. doi: 10.1002/prot.22487.
9
Quality assessment of protein structure models.
Curr Protein Pept Sci. 2009 Jun;10(3):216-28. doi: 10.2174/138920309788452173.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验