Department of Computer Science, University of Missouri, Columbia, MO, USA.
Proteins. 2011;79 Suppl 10(Suppl 10):172-84. doi: 10.1002/prot.23184. Epub 2011 Oct 14.
Protein tertiary structures are essential for studying functions of proteins at molecular level. An indispensable approach for protein structure solution is computational prediction. Most protein structure prediction methods generate candidate models first and select the best candidates by model quality assessment (QA). In many cases, good models can be produced, but the QA tools fail to select the best ones from the candidate model pool. Because of incomplete understanding of protein folding, each QA method only reflects partial facets of a structure model and thus has limited discerning power with no one consistently outperforming others. In this article, we developed a set of new QA methods, including two QA methods for evaluating target/template alignments, a molecular dynamics (MD)-based QA method, and three consensus QA methods with selected references to reveal new facets of protein structures complementary to the existing methods. Moreover, the underlying relationship among different QA methods were analyzed and then integrated into a multilayer evaluation approach to guide the model generation and model selection in prediction. All methods are integrated and implemented into an innovative and improved prediction system hereafter referred to as MUFOLD. In CASP8 and CASP9, MUFOLD has demonstrated the proof of the principles in terms of both QA discerning power and structure prediction accuracy.
蛋白质的三级结构对于研究蛋白质在分子水平上的功能至关重要。计算预测是解决蛋白质结构的不可或缺的方法。大多数蛋白质结构预测方法首先生成候选模型,然后通过模型质量评估(QA)选择最佳候选模型。在许多情况下,可以生成良好的模型,但 QA 工具无法从候选模型池中选择最佳模型。由于对蛋白质折叠的理解不完整,每种 QA 方法仅反映结构模型的部分方面,因此具有有限的辨别能力,没有一种方法始终优于其他方法。在本文中,我们开发了一组新的 QA 方法,包括两种用于评估目标/模板对齐的 QA 方法、一种基于分子动力学(MD)的 QA 方法以及三种使用选定参考文献的共识 QA 方法,以揭示与现有方法互补的蛋白质结构的新方面。此外,分析了不同 QA 方法之间的内在关系,然后将其整合到多层评估方法中,以指导预测中的模型生成和模型选择。所有方法都进行了集成并实现到一个创新和改进的预测系统中,此后称为 MUFOLD。在 CASP8 和 CASP9 中,MUFOLD 在 QA 辨别能力和结构预测准确性方面都证明了其原理的正确性。