Suppr超能文献

CASP9 模型质量预测评估。

Evaluation of model quality predictions in CASP9.

机构信息

Genome Center, University of California-Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.

出版信息

Proteins. 2011;79 Suppl 10(Suppl 10):91-106. doi: 10.1002/prot.23180. Epub 2011 Oct 14.

Abstract

CASP has been assessing the state of the art in the a priori estimation of accuracy of protein structure prediction since 2006. The inclusion of model quality assessment category in CASP contributed to a rapid development of methods in this area. In the last experiment, 46 quality assessment groups tested their approaches to estimate the accuracy of protein models as a whole and/or on a per-residue basis. We assessed the performance of these methods predominantly on the basis of the correlation between the predicted and observed quality of the models on both global and local scales. The ability of the methods to identify the models closest to the best one, to differentiate between good and bad models, and to identify well modeled regions was also analyzed. Our evaluations demonstrate that even though global quality assessment methods seem to approach perfection point (weighted average per-target Pearson's correlation coefficients are as high as 0.97 for the best groups), there is still room for improvement. First, all top-performing methods use consensus approaches to generate quality estimates, and this strategy has its own limitations. Second, the methods that are based on the analysis of individual models lag far behind clustering techniques and need a boost in performance. The methods for estimating per-residue accuracy of models are less accurate than global quality assessment methods, with an average weighted per-model correlation coefficient in the range of 0.63-0.72 for the best 10 groups.

摘要

自 2006 年以来,CASP 一直在评估先验估计蛋白质结构预测准确性的最新技术。CASP 中模型质量评估类别的纳入促进了该领域方法的快速发展。在最后一次实验中,46 个质量评估组测试了他们的方法来整体评估和/或逐残基评估蛋白质模型的准确性。我们主要基于模型在全局和局部尺度上的预测质量与观察质量之间的相关性来评估这些方法的性能。还分析了这些方法识别最接近最佳模型、区分良好模型和不良模型以及识别建模良好区域的能力。我们的评估表明,尽管全局质量评估方法似乎接近完美点(最佳组的加权平均每个目标皮尔逊相关系数高达 0.97),但仍有改进的空间。首先,所有表现最好的方法都使用共识方法来生成质量估计,而这种策略有其自身的局限性。其次,基于分析单个模型的方法远远落后于聚类技术,需要提高性能。预测模型残基准确性的方法不如全局质量评估方法准确,最佳的 10 个组的平均加权每个模型相关系数在 0.63-0.72 范围内。

相似文献

1
Evaluation of model quality predictions in CASP9.
Proteins. 2011;79 Suppl 10(Suppl 10):91-106. doi: 10.1002/prot.23180. Epub 2011 Oct 14.
2
Evaluation of CASP8 model quality predictions.
Proteins. 2009;77 Suppl 9:157-66. doi: 10.1002/prot.22534.
3
Assessment of the assessment: evaluation of the model quality estimates in CASP10.
Proteins. 2014 Feb;82 Suppl 2(0 2):112-26. doi: 10.1002/prot.24347. Epub 2013 Aug 31.
4
Assessment of model accuracy estimations in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):345-360. doi: 10.1002/prot.25371. Epub 2017 Sep 8.
5
United3D: a protein model quality assessment program that uses two consensus based methods.
Chem Pharm Bull (Tokyo). 2012;60(11):1359-65. doi: 10.1248/cpb.c12-00287.
6
FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions.
PLoS One. 2012;7(5):e38219. doi: 10.1371/journal.pone.0038219. Epub 2012 May 30.
7
Improved model quality assessment using ProQ2.
BMC Bioinformatics. 2012 Sep 10;13:224. doi: 10.1186/1471-2105-13-224.
8
Assessment of the assessment-All about complexes.
Proteins. 2023 Dec;91(12):1850-1860. doi: 10.1002/prot.26612. Epub 2023 Oct 19.
9
Assessment of template based protein structure predictions in CASP9.
Proteins. 2011;79 Suppl 10:37-58. doi: 10.1002/prot.23177. Epub 2011 Oct 15.

引用本文的文献

1
The physics-AI dialogue in drug design.
RSC Med Chem. 2025 Jan 23;16(4):1499-1515. doi: 10.1039/d4md00869c. eCollection 2025 Apr 16.
2
Challenges in bridging the gap between protein structure prediction and functional interpretation.
Proteins. 2025 Jan;93(1):400-410. doi: 10.1002/prot.26614. Epub 2023 Oct 18.
3
iQDeep: an integrated web server for protein scoring using multiscale deep learning models.
J Mol Biol. 2023 Jul 15;435(14):168057. doi: 10.1016/j.jmb.2023.168057. Epub 2023 Mar 23.
4
New prediction categories in CASP15.
Proteins. 2023 Dec;91(12):1550-1557. doi: 10.1002/prot.26515. Epub 2023 Jun 12.
5
Quality Estimates for 3D Protein Models.
Methods Mol Biol. 2023;2627:101-118. doi: 10.1007/978-1-0716-2974-1_6.
6
Estimation of model accuracy by a unique set of features and tree-based regressor.
Sci Rep. 2022 Aug 18;12(1):14074. doi: 10.1038/s41598-022-17097-z.
7
Modeling SARS-CoV-2 proteins in the CASP-commons experiment.
Proteins. 2021 Dec;89(12):1987-1996. doi: 10.1002/prot.26231. Epub 2021 Oct 5.
8
Assessment of protein model structure accuracy estimation in CASP14: Old and new challenges.
Proteins. 2021 Dec;89(12):1940-1948. doi: 10.1002/prot.26192. Epub 2021 Aug 5.
9
Using physical features of protein core packing to distinguish real proteins from decoys.
Protein Sci. 2020 Sep;29(9):1931-1944. doi: 10.1002/pro.3914.
10
Machine Learning Approaches for Quality Assessment of Protein Structures.
Biomolecules. 2020 Apr 17;10(4):626. doi: 10.3390/biom10040626.

本文引用的文献

1
CASP9 target classification.
Proteins. 2011;79 Suppl 10(Suppl 10):21-36. doi: 10.1002/prot.23190. Epub 2011 Oct 14.
2
CASP9 results compared to those of previous CASP experiments.
Proteins. 2011;79 Suppl 10(0 10):196-207. doi: 10.1002/prot.23182. Epub 2011 Oct 14.
4
Fast geometric consensus approach for protein model quality assessment.
J Comput Biol. 2011 Dec;18(12):1807-18. doi: 10.1089/cmb.2010.0170. Epub 2011 Jan 18.
6
Docking-based virtual screening for ligands of G protein-coupled receptors: not only crystal structures but also in silico models.
J Mol Graph Model. 2011 Feb;29(5):614-23. doi: 10.1016/j.jmgm.2010.11.005. Epub 2010 Nov 19.
7
ModBase, a database of annotated comparative protein structure models, and associated resources.
Nucleic Acids Res. 2011 Jan;39(Database issue):D465-74. doi: 10.1093/nar/gkq1091. Epub 2010 Nov 19.
9
Structure-based modeling of the functional HIV-1 intasome and its inhibition.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15910-5. doi: 10.1073/pnas.1002346107. Epub 2010 Aug 23.
10
Protein kinases: docking and homology modeling reliability.
J Chem Inf Model. 2010 Aug 23;50(8):1432-41. doi: 10.1021/ci100161z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验