Suppr超能文献

多体系统的实空间有限差分方法:路径积分重整化群方法和直接能量最小化方法。

Real-space finite-difference approach for multi-body systems: path-integral renormalization group method and direct energy minimization method.

机构信息

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.

出版信息

J Phys Condens Matter. 2011 Nov 2;23(43):434001. doi: 10.1088/0953-8984/23/43/434001.

Abstract

The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.

摘要

本文介绍了多体体系实用第一性原理电子结构计算的实空间有限差分方案中的路径积分重整化群和直接能量最小化方法。这两种方法可以处理具有相关性效应的更高维系统。此外,它们可以很容易地扩展到包含两种以上量子粒子的多分量量子系统。目前方法的关键是采用非正交 Slater 行列式(SD)的线性组合作为多体波函数。作为一个显著的结果,使用少数几个 SD 就可以达到与变分蒙特卡罗方法相同的精度。这使得我们可以研究由电子和原子核组成的整个基态,而无需使用 Born-Oppenheimer 近似。本文还介绍了旨在实现实际计算的方法发展的最新活动,例如库仑相互作用的辅助场的实现、虚时间演化中的动力学算符的处理、裸库仑原子势的节省时间的双网格技术以及最小化总能量泛函的优化方案。作为测试示例,计算了氢分子的总能量、亚甲基的原子构型和二维量子点的电子结构,证明了目前方法的准确性、有效性和可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验