Suppr超能文献

木霉中的次生代谢——基因组视角。

Secondary metabolism in Trichoderma--a genomic perspective.

机构信息

Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.

Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Microbiology (Reading). 2012 Jan;158(Pt 1):35-45. doi: 10.1099/mic.0.053629-0. Epub 2011 Oct 13.

Abstract

Trichoderma spp. are a rich source of secondary metabolites (SMs). The recent publication of the genome sequences of three Trichoderma spp. has revealed a vast repertoire of genes putatively involved in the biosynthesis of SMs, such as non-ribosomal peptides, polyketides, terpenoids and pyrones. Interestingly, the genomes of the mycoparasitic species Trichoderma virens and Trichoderma atroviride are enriched in secondary metabolism-related genes compared with the biomass-degrading Trichoderma reesei: 18 and 18 polyketide synthases compared with 11; 28 and 16 non-ribosomal peptide synthetases compared with 10, respectively. All three species produce a special class of non-ribosomally synthesized peptides known as peptaibols, containing non-proteinogenic amino acids (particularly α-aminoisobutyric acid). In common with other filamentous ascomycetes, Trichoderma spp. may require siderophores (also produced by non-ribosomal peptide synthetases) to grow in iron-poor conditions and to compete with their hosts for available iron. Two generalizations can be made about fungal SM genes: they are often found in clusters, and many are not expressed under standard laboratory conditions. This has made it difficult to identify the compounds. Trichoderma, in particular, interacts with other microbes in the soil and with plant roots in the rhizosphere. A detailed metabolomic-genomic study would eventually unravel the roles of many of these SMs in natural ecosystems. Novel genetic tools developed recently, combined with biological understanding of the function of SMs as toxins or signals, should lead to 'awakening' of these 'silent' clusters. Knowledge of the SM repertoire should precede application of Trichoderma strains for biocontrol: some metabolites could be toxic to plants and their consumers, and thus should be avoided. Others could be beneficial, antagonizing pathogens or inducing resistance in crop plants.

摘要

木霉属是次生代谢物(SMs)的丰富来源。最近发表的三个木霉属物种的基因组序列揭示了大量推测参与次生代谢物生物合成的基因,如非核糖体肽、聚酮、萜类和吡喃酮。有趣的是,与生物量降解的里氏木霉相比,菌寄生性物种绿色木霉和深绿木霉的基因组中富含与次生代谢相关的基因:18 个和 18 个聚酮合酶,分别为 11 个;28 个和 16 个非核糖体肽合酶,分别为 10 个。这三个物种都产生一种特殊的非核糖体合成肽,称为肽类化合物,含有非蛋白氨基酸(特别是α-氨基异丁酸)。与其他丝状子囊菌一样,木霉属可能需要铁载体(也由非核糖体肽合酶产生)在缺铁条件下生长,并与宿主争夺可用的铁。关于真菌 SM 基因,可以得出两个概括:它们通常存在于簇中,许多在标准实验室条件下不表达。这使得鉴定化合物变得困难。特别是木霉属,它与土壤中的其他微生物和根际中的植物根系相互作用。详细的代谢组学-基因组学研究最终将揭示这些 SMs 在自然生态系统中的许多作用。最近开发的新遗传工具,结合对 SMs 作为毒素或信号功能的生物学理解,应该会导致这些“沉默”簇的“觉醒”。在应用木霉属菌株进行生物防治之前,应该先了解 SM 谱:一些代谢物可能对植物及其消费者有毒,因此应避免使用。其他代谢物可能有益,对抗病原体或诱导作物植物的抗性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验