Suppr超能文献

一种用于自动追踪三维快速游动未标记细胞的分割算法。

A segmentation algorithm for automated tracking of fast swimming unlabelled cells in three dimensions.

机构信息

Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, 62250 Morelos, Mexico.

出版信息

J Microsc. 2012 Jan;245(1):72-81. doi: 10.1111/j.1365-2818.2011.03545.x. Epub 2011 Oct 17.

Abstract

Recent advances in microscopy and cytolabelling methods enable the real time imaging of cells as they move and interact in their real physiological environment. Scenarios in which multiple cells move autonomously in all directions are not uncommon in biology. A remarkable example is the swimming of marine spermatozoa in search of the conspecific oocyte. Imaging cells in these scenarios, particularly when they move fast and are poorly labelled or even unlabelled requires very fast three-dimensional time-lapse (3D+t) imaging. This 3D+t imaging poses challenges not only to the acquisition systems but also to the image analysis algorithms. It is in this context that this work describes an original automated multiparticle segmentation method to analyse motile translucent cells in 3D microscopical volumes. The proposed segmentation technique takes advantage of the way the cell appearance changes with the distance to the focal plane position. The cells translucent properties and their interaction with light produce a specific pattern: when the cell is within or close to the focal plane, its two-dimensional (2D) appearance matches a bright spot surrounded by a dark ring, whereas when it is farther from the focal plane the cell contrast is inverted looking like a dark spot surrounded by a bright ring. The proposed method analyses the acquired video sequence frame-by-frame taking advantage of 2D image segmentation algorithms to identify and select candidate cellular sections. The crux of the method is in the sequential filtering of the candidate sections, first by template matching of the in-focus and out-of-focus templates and second by considering adjacent candidates sections in 3D. These sequential filters effectively narrow down the number of segmented candidate sections making the automatic tracking of cells in three dimensions a straightforward operation.

摘要

显微镜和细胞标记方法的最新进展使人们能够实时观察细胞在其真实生理环境中移动和相互作用的情况。在生物学中,多个细胞自主向各个方向移动的情况并不罕见。一个显著的例子是海洋精子为寻找同种卵子而游动。在这些情况下对细胞进行成像,特别是当它们移动得很快且标记不良甚至未标记时,需要非常快速的三维延时(3D+t)成像。这种 3D+t 成像不仅对采集系统提出了挑战,也对图像分析算法提出了挑战。正是在这种情况下,这项工作描述了一种原始的自动多粒子分割方法,用于分析 3D 显微镜体积中运动的半透明细胞。所提出的分割技术利用了细胞外观随距焦平面位置的变化方式。细胞的半透明特性及其与光的相互作用产生了一种特定的模式:当细胞在焦平面内或附近时,其二维(2D)外观与一个被暗环包围的亮点相匹配,而当它离焦平面更远时,细胞对比度反转,看起来像一个被亮环包围的暗点。所提出的方法逐帧分析采集的视频序列,利用 2D 图像分割算法来识别和选择候选细胞区域。该方法的关键在于候选区域的顺序滤波,首先是通过聚焦和离焦模板的模板匹配,其次是考虑 3D 中的相邻候选区域。这些顺序滤波器有效地减少了分割候选区域的数量,从而使细胞在三维空间中的自动跟踪成为一项简单的操作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验