Suppr超能文献

人脑中乙酰胆碱酯酶与环磷酰胺的相互作用:分子建模和对接研究。

Interaction of human brain acetylcholinesterase with cyclophosphamide: a molecular modeling and docking study.

机构信息

King Fahd Medical Research centre, King Abdulaziz University, Saudi Arabia.

出版信息

CNS Neurol Disord Drug Targets. 2011 Nov;10(7):845-8. doi: 10.2174/187152711798072365.

Abstract

This study describes the interaction between human acetylcholinesterase (AChE), a key regulator of central and peripheral cholinergic function, and the widely used nitrogen mustard alkylating agent, cyclophosphamide (CP). Modeling of the AChE sequence (NCBI Accession No: AAI05061.1) was performed using 'Swiss Model Workspace'. The protein-model was submitted to the Protein Model Database and was assigned accession number PM0077393. A plot showing normalized QMEAN scores versus protein size was made to compare the model with a non-redundant set of Protein Data Bank structures, which gave a Z-score QMEAN as -0.58. The predicted local error for the modeled structure was found to be well within tolerable limits. Z-score values for Cβ interaction, all atom interaction, solvation and torsion were found to be -1.10, -0.90, -0.06 and -0.40, respectively. Docking between CP and AChE was performed using 'Autodock4.2'. Apart from other interaction-types, six carbon atoms of CP (C1, C2, C3, C4, C6 and C7) were determined to be involved in hydrophobic interactions with amino acid residues Y121, W233, L323, F331, F335 and Y338 of the 'acyl pocket' within AChE. Five carbon atoms of CP (C2, C4, C5, C6 and C7) were involved in hydrophobic interactions with 3 amino acid residues within the enzyme's 'catalytic site'. In conclusion, hydrophobic interactions play a major role in the appropriate positioning of CP within the 'acyl pocket' as well as 'catalytic site' of AChE to permit suitable orientation and allow docking. This information may aid the design of more potent and versatile AChE-inhibitors as pharmacologic tools and drugs to characterize and treat neurological disorders, and additionally provides a model whose value can be quantitatively assessed by X-ray crystallographic analysis of the AChECP three-dimensional structure.

摘要

本研究描述了人类乙酰胆碱酯酶(AChE)与广泛使用的氮芥烷化剂环磷酰胺(CP)之间的相互作用。使用“Swiss Model Workspace”对 AChE 序列(NCBI 访问号:AAI05061.1)进行建模。将蛋白质模型提交到蛋白质模型数据库,并分配了 PM0077393 的访问号。绘制了归一化 QMEAN 得分与蛋白质大小的关系图,以将模型与非冗余的蛋白质数据库结构集进行比较,该模型的 Z 分数 QMEAN 为-0.58。预测模型结构的局部误差发现处于可接受的范围内。Cβ 相互作用、全原子相互作用、溶剂化和扭转的 Z 分数值分别为-1.10、-0.90、-0.06 和-0.40。使用“Autodock4.2”进行 CP 和 AChE 之间的对接。除了其他相互作用类型外,CP 的 6 个碳原子(C1、C2、C3、C4、C6 和 C7)被确定与 AChE 中的“酰基口袋”中的氨基酸残基 Y121、W233、L323、F331、F335 和 Y338 发生疏水相互作用。CP 的 5 个碳原子(C2、C4、C5、C6 和 C7)与酶的“催化位点”中的 3 个氨基酸残基发生疏水相互作用。总之,疏水相互作用在 CP 适当定位于 AChE 的“酰基口袋”和“催化位点”中以允许合适的定向和对接方面起着主要作用。该信息可能有助于设计更有效和多功能的 AChE 抑制剂作为药理学工具和药物,以表征和治疗神经疾病,并提供一个可以通过 AChE-CP 三维结构的 X 射线晶体学分析进行定量评估的模型。

相似文献

1
Interaction of human brain acetylcholinesterase with cyclophosphamide: a molecular modeling and docking study.
CNS Neurol Disord Drug Targets. 2011 Nov;10(7):845-8. doi: 10.2174/187152711798072365.
2
Molecular interaction of the antineoplastic drug, methotrexate with human brain acetylcholinesterase: a docking study.
CNS Neurol Disord Drug Targets. 2012 Mar;11(2):142-7. doi: 10.2174/187152712800269669.
4
Molecular interaction of human brain acetylcholinesterase with a natural inhibitor huperzine-B: an enzoinformatics approach.
CNS Neurol Disord Drug Targets. 2014 Apr;13(3):487-90. doi: 10.2174/18715273113126660163.
5
Human platelet acetylcholinesterase inhibition by cyclophosphamide: a combined experimental and computational approach.
CNS Neurol Disord Drug Targets. 2011 Dec;10(8):928-35. doi: 10.2174/187152711799219280.
10
Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs.
Chem Biol Interact. 1993 Jun;87(1-3):187-97. doi: 10.1016/0009-2797(93)90042-w.

引用本文的文献

1
Structure-Based Scaffold Repurposing toward the Discovery of Novel Cholinesterase Inhibitors.
ACS Omega. 2020 Nov 24;5(48):30971-30979. doi: 10.1021/acsomega.0c03848. eCollection 2020 Dec 8.
2
Protective Effect of Edaravone on Cyclophosphamide Induced Oxidative Stress and Neurotoxicity in Rats.
Curr Drug Saf. 2019;14(3):209-216. doi: 10.2174/1574886314666190506100717.
3
Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer's disease.
CNS Neurosci Ther. 2018 Sep;24(9):753-762. doi: 10.1111/cns.12971. Epub 2018 May 16.

本文引用的文献

1
Alternative drug therapies for dementia.
J Psychosoc Nurs Ment Health Serv. 2011 May;49(5):17-20. doi: 10.3928/02793695-20110407-03. Epub 2011 Apr 27.
2
The use of cholinesterases in ecotoxicology.
Rev Environ Contam Toxicol. 2011;212:29-59. doi: 10.1007/978-1-4419-8453-1_2.
3
Acetylcholinesterase inhibitor treatment for myasthenia gravis.
Cochrane Database Syst Rev. 2011 Feb 16(2):CD006986. doi: 10.1002/14651858.CD006986.pub2.
4
Progress in the treatment of myasthenia gravis.
Ther Adv Neurol Disord. 2008 Sep;1(2):36-51. doi: 10.1177/1756285608093888.
5
Expression of cholinesterases in human kidney and its variation in renal cell carcinoma types.
FEBS J. 2010 Nov;277(21):4519-29. doi: 10.1111/j.1742-4658.2010.07861.x. Epub 2010 Sep 30.
6
Front-line management of diffuse large B cell lymphoma.
Curr Opin Oncol. 2010 Nov;22(6):642-5. doi: 10.1097/CCO.0b013e32833ed848.
7
Multiple approaches to analyse the data for rat brain acetylcholinesterase inhibition by cyclophosphamide.
Neurochem Res. 2010 Oct;35(10):1501-9. doi: 10.1007/s11064-010-0199-y. Epub 2010 Jul 21.
9
Cyclophosphamide and cancer: golden anniversary.
Nat Rev Clin Oncol. 2009 Nov;6(11):638-47. doi: 10.1038/nrclinonc.2009.146. Epub 2009 Sep 29.
10
Cholinesterase inhibitors and beyond.
Curr Alzheimer Res. 2009 Apr;6(2):86-96. doi: 10.2174/156720509787602861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验