King Fahd Medical Research centre, King Abdulaziz University, Saudi Arabia.
CNS Neurol Disord Drug Targets. 2011 Nov;10(7):845-8. doi: 10.2174/187152711798072365.
This study describes the interaction between human acetylcholinesterase (AChE), a key regulator of central and peripheral cholinergic function, and the widely used nitrogen mustard alkylating agent, cyclophosphamide (CP). Modeling of the AChE sequence (NCBI Accession No: AAI05061.1) was performed using 'Swiss Model Workspace'. The protein-model was submitted to the Protein Model Database and was assigned accession number PM0077393. A plot showing normalized QMEAN scores versus protein size was made to compare the model with a non-redundant set of Protein Data Bank structures, which gave a Z-score QMEAN as -0.58. The predicted local error for the modeled structure was found to be well within tolerable limits. Z-score values for Cβ interaction, all atom interaction, solvation and torsion were found to be -1.10, -0.90, -0.06 and -0.40, respectively. Docking between CP and AChE was performed using 'Autodock4.2'. Apart from other interaction-types, six carbon atoms of CP (C1, C2, C3, C4, C6 and C7) were determined to be involved in hydrophobic interactions with amino acid residues Y121, W233, L323, F331, F335 and Y338 of the 'acyl pocket' within AChE. Five carbon atoms of CP (C2, C4, C5, C6 and C7) were involved in hydrophobic interactions with 3 amino acid residues within the enzyme's 'catalytic site'. In conclusion, hydrophobic interactions play a major role in the appropriate positioning of CP within the 'acyl pocket' as well as 'catalytic site' of AChE to permit suitable orientation and allow docking. This information may aid the design of more potent and versatile AChE-inhibitors as pharmacologic tools and drugs to characterize and treat neurological disorders, and additionally provides a model whose value can be quantitatively assessed by X-ray crystallographic analysis of the AChECP three-dimensional structure.
本研究描述了人类乙酰胆碱酯酶(AChE)与广泛使用的氮芥烷化剂环磷酰胺(CP)之间的相互作用。使用“Swiss Model Workspace”对 AChE 序列(NCBI 访问号:AAI05061.1)进行建模。将蛋白质模型提交到蛋白质模型数据库,并分配了 PM0077393 的访问号。绘制了归一化 QMEAN 得分与蛋白质大小的关系图,以将模型与非冗余的蛋白质数据库结构集进行比较,该模型的 Z 分数 QMEAN 为-0.58。预测模型结构的局部误差发现处于可接受的范围内。Cβ 相互作用、全原子相互作用、溶剂化和扭转的 Z 分数值分别为-1.10、-0.90、-0.06 和-0.40。使用“Autodock4.2”进行 CP 和 AChE 之间的对接。除了其他相互作用类型外,CP 的 6 个碳原子(C1、C2、C3、C4、C6 和 C7)被确定与 AChE 中的“酰基口袋”中的氨基酸残基 Y121、W233、L323、F331、F335 和 Y338 发生疏水相互作用。CP 的 5 个碳原子(C2、C4、C5、C6 和 C7)与酶的“催化位点”中的 3 个氨基酸残基发生疏水相互作用。总之,疏水相互作用在 CP 适当定位于 AChE 的“酰基口袋”和“催化位点”中以允许合适的定向和对接方面起着主要作用。该信息可能有助于设计更有效和多功能的 AChE 抑制剂作为药理学工具和药物,以表征和治疗神经疾病,并提供一个可以通过 AChE-CP 三维结构的 X 射线晶体学分析进行定量评估的模型。