Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
Prog Mol Biol Transl Sci. 2011;103:277-352. doi: 10.1016/B978-0-12-415906-8.00003-0.
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
纳米生物技术的一个关键挑战是利用自组装系统,其中分子自发地缔合形成可重复的聚集体和超分子结构。在本贡献中,我们描述了晶体细菌表面层(S-层)的基本原理及其作为图案化元件的用途。S-层在纳米生物技术中的广泛应用潜力基于由相同蛋白质或糖蛋白亚基组成的单分子阵列的特定固有特征。最重要的是,晶格上的物理化学性质和功能基团以明确定义的位置和方向排列。S-层的许多应用取决于分离的亚基在悬浮液或合适的表面(例如聚合物、金属、硅片)或界面(例如脂质膜、脂质体、乳脂体)上重新结晶成单分子阵列的能力。S-层还为生成更复杂的超分子结构提供了独特的结构基础和图案化元件,涉及所有主要类别的生物分子(例如蛋白质、脂质、聚糖、核酸或这些的组合)。因此,S-层满足作为构建块的关键要求,用于生产分子纳米技术、纳米生物技术、仿生学和合成生物学所需的新型超分子材料和纳米级器件。