Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
Sensors (Basel). 2020 Mar 19;20(6):1721. doi: 10.3390/s20061721.
Designing and development of electrochemical biosensors enable molecule sensing and quantification of biochemical compositions with multitudinous benefits such as monitoring, detection, and feedback for medical and biotechnological applications. Integrating bioinspired materials and electrochemical techniques promote specific, rapid, sensitive, and inexpensive biosensing platforms for (e.g., point-of-care testing). The selection of biomaterials to decorate a biosensor surface is a critical issue as it strongly affects selectivity and sensitivity. In this context, smart biomaterials with the intrinsic self-assemble capability like bacterial surface (S-) layer proteins are of paramount importance. Indeed, by forming a crystalline two-dimensional protein lattice on many sensors surfaces and interfaces, the S-layer lattice constitutes an immobilization matrix for small biomolecules and lipid membranes and a patterning structure with unsurpassed spatial distribution for sensing elements and bioreceptors. This review aims to highlight on exploiting S-layer proteins in biosensor technology for various applications ranging from detection of metal ions over small organic compounds to cells. Furthermore, enzymes immobilized on the S-layer proteins allow specific detection of several vital biomolecules. The special features of the S-layer protein lattice as part of the sensor architecture enhances surface functionalization and thus may feature an innovative class of electrochemical biosensors.
电化学生物传感器的设计和开发使人们能够对生物化学物质进行分子传感和定量,具有监测、检测和反馈等诸多益处,可应用于医疗和生物技术领域。将仿生材料和电化学技术相结合,为(例如,即时检测)开发出了具有特异性、快速性、敏感性和经济性的生物传感平台。在生物传感器表面修饰生物材料的选择是一个关键问题,因为它强烈影响选择性和敏感性。在这方面,具有内在自组装能力的智能生物材料(如细菌表面(S-)层蛋白)非常重要。事实上,通过在许多传感器表面和界面上形成二维结晶蛋白晶格,S-层晶格构成了小分子和脂质膜的固定基质,以及具有无与伦比空间分布的传感元件和生物受体的图案结构。本综述旨在强调利用 S-层蛋白在生物传感器技术中的各种应用,包括检测金属离子、小分子有机化合物和细胞等。此外,固定在 S-层蛋白上的酶可用于特定的几种重要生物分子的检测。S-层蛋白晶格作为传感器结构的一部分的特殊性质增强了表面功能化,因此可能构成一类新型的电化学生物传感器。