Luo Xiongbiao, Kitasaka Takayuki, Mori Kensaku
Graduate School of Information Science, Nagoya University, Japan.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):248-55. doi: 10.1007/978-3-642-23626-6_31.
This paper presents a new bronchoscope motion tracking method that utilizes manifold modeling and sequential Monte Carlo (SMC) sampler to boost navigated bronchoscopy. Our strategy to estimate the bronchoscope motions comprises two main stages: (1) bronchoscopic scene identification and (2) SMC sampling. We extend a spatial local and global regressive mapping (LGRM) method to Spatial-LGRM to learn bronchoscopic video sequences and construct their manifolds. By these manifolds, we can classify bronchoscopic scenes to bronchial branches where a bronchoscope is located. Next, we employ a SMC sampler based on a selective image similarity measure to integrate estimates of stage (1) to refine positions and orientations of a bronchoscope. Our proposed method was validated on patient datasets. Experimental results demonstrate the effectiveness and robustness of our method for bronchoscopic navigation without an additional position sensor.
本文提出了一种新的支气管镜运动跟踪方法,该方法利用流形建模和序贯蒙特卡罗(SMC)采样器来促进导航支气管镜检查。我们估计支气管镜运动的策略包括两个主要阶段:(1)支气管镜场景识别和(2)SMC采样。我们将一种空间局部和全局回归映射(LGRM)方法扩展为空间-LGRM,以学习支气管镜视频序列并构建它们的流形。通过这些流形,我们可以将支气管镜场景分类到支气管镜所在的支气管分支。接下来,我们采用基于选择性图像相似性度量的SMC采样器来整合阶段(1)的估计,以细化支气管镜的位置和方向。我们提出的方法在患者数据集上得到了验证。实验结果证明了我们的方法在无需额外位置传感器的情况下进行支气管镜导航的有效性和鲁棒性。