Suppr超能文献

顺铂处理酿酒酵母后形成的 RNA-铂加合物。

RNA-Pt adducts following cisplatin treatment of Saccharomyces cerevisiae.

机构信息

Department of Chemistry, University of Oregon, Eugene, 97403, United States.

出版信息

ACS Chem Biol. 2012 Jan 20;7(1):218-25. doi: 10.1021/cb200279p. Epub 2011 Nov 15.

Abstract

The numerous regulatory roles of cellular RNAs suggest novel potential drug targets, but establishing intracellular drug-RNA interactions is challenging. Cisplatin (cis-diamminedichloridoplatinum(II)) is a leading anticancer drug that forms exchange-inert complexes with nucleic acids, allowing its distribution on cellular RNAs to be followed ex vivo. Although Pt adduct formation on DNA is well-known, a complete characterization of cellular RNA-Pt adducts has not been performed. In this study, the action of cisplatin on S. cerevisiae in minimal media was established with growth curves, clonogenic assays, and tests for apoptotic markers. Despite high toxicity, cisplatin-induced apoptosis in S. cerevisiae was not observed under these conditions. In-cell Pt concentrations and Pt accumulation on poly(A)-mRNA, rRNA, total RNA, and DNA quantified via ICP-MS indicate ∼4- to 20-fold more Pt accumulation in total cellular RNA than in DNA. Interestingly, similar Pt accumulation is observed on rRNA and total RNA, corresponding to one Pt per (14,600 ± 1,500) and (5760 ± 580) nucleotides on total RNA following 100 and 200 μM cisplatin treatments, respectively. Specific Pt adducts mapped by primer extension analysis of a solvent-accessible 18S rRNA helix occur at terminal and internal loop regions and appear as soon as 1 h post-treatment. Pt per nucleotide accumulation on poly(A)-mRNA is 4- to 6-fold lower than on rRNA but could have consequences for low copy-number or highly regulated transcripts. Taken together, these data demonstrate significant accumulation of Pt adducts on cellular RNA species following in cellulo cisplatin treatment. These and other small molecule-RNA interactions could disrupt processes regulated by RNA.

摘要

细胞 RNA 的众多调控作用表明其可能成为新的潜在药物靶点,但确定细胞内药物-RNA 相互作用具有挑战性。顺铂(顺式-二氨二氯合铂(II))是一种领先的抗癌药物,它与核酸形成交换惰性复合物,使其在细胞内 RNA 上的分布能够在体外进行跟踪。尽管 DNA 上的 Pt 加合物形成已广为人知,但尚未对细胞 RNA-Pt 加合物进行全面表征。在这项研究中,通过生长曲线、集落形成实验和凋亡标志物测试,在最小培养基中确定了顺铂对酿酒酵母的作用。尽管毒性很高,但在这些条件下,酿酒酵母中的顺铂诱导凋亡并未观察到。通过 ICP-MS 定量的细胞内 Pt 浓度和聚(A)-mRNA、rRNA、总 RNA 和 DNA 上的 Pt 积累表明,总细胞 RNA 中的 Pt 积累比 DNA 高 4 至 20 倍。有趣的是,在 rRNA 和总 RNA 上观察到相似的 Pt 积累,分别对应于在 100 和 200 μM 顺铂处理后 18S rRNA 总 RNA 上的每一个 Pt 对应于(14,600 ± 1,500)和(5760 ± 580)个核苷酸,以及 1 h 后即可出现引物延伸分析中溶剂可及的 18S rRNA 螺旋的特定 Pt 加合物出现在末端和内部环区域。聚(A)-mRNA 上的 Pt 核苷酸积累比 rRNA 低 4 至 6 倍,但可能对低拷贝数或高度调控的转录物有影响。综上所述,这些数据表明,在细胞内顺铂处理后,细胞 RNA 种类上大量积累了 Pt 加合物。这些和其他小分子-RNA 相互作用可能会破坏 RNA 调控的过程。

相似文献

1
RNA-Pt adducts following cisplatin treatment of Saccharomyces cerevisiae.
ACS Chem Biol. 2012 Jan 20;7(1):218-25. doi: 10.1021/cb200279p. Epub 2011 Nov 15.
2
Platinum-RNA modifications following drug treatment in S. cerevisiae identified by click chemistry and enzymatic mapping.
ACS Chem Biol. 2014 Oct 17;9(10):2404-11. doi: 10.1021/cb500395z. Epub 2014 Aug 15.
3
Mapping platinum adducts on yeast ribosomal RNA using high-throughput sequencing.
Chem Commun (Camb). 2017 Nov 28;53(95):12746-12749. doi: 10.1039/c7cc06708a.
5
In vitro studies on the mechanisms of oxaliplatin resistance.
Cancer Chemother Pharmacol. 2001 Nov;48(5):398-406. doi: 10.1007/s002800100363.
7
Specificity of platinum-DNA adduct repair.
J Inorg Biochem. 1999 Oct;77(1-2):71-81. doi: 10.1016/s0162-0134(99)00149-x.
10

引用本文的文献

2
RNA damage and its implications in genome stability.
DNA Repair (Amst). 2025 Mar;147:103821. doi: 10.1016/j.dnarep.2025.103821. Epub 2025 Mar 1.
3
YTHDC1 cooperates with the THO complex to prevent RNA-damage-induced DNA breaks.
Mol Cell. 2025 Mar 20;85(6):1085-1100.e9. doi: 10.1016/j.molcel.2025.02.003. Epub 2025 Mar 3.
4
Impacts of amino acid-linked platinum(II) complexes on DNA structure.
J Biol Inorg Chem. 2025 Feb;30(1):87-101. doi: 10.1007/s00775-025-02097-x. Epub 2025 Jan 24.
6
Platinum-based drugs and hydrogel: a promising anti-tumor combination.
Drug Deliv. 2023 Dec;30(1):2287966. doi: 10.1080/10717544.2023.2287966. Epub 2023 Dec 11.
7
Inhibition of nucleolar transcription by oxaliplatin involves ATM/ATR kinase signaling.
Cell Chem Biol. 2023 Aug 17;30(8):906-919.e4. doi: 10.1016/j.chembiol.2023.06.010. Epub 2023 Jul 10.
8
PD-1/PD-L1 and DNA Damage Response in Cancer.
Cells. 2023 Feb 7;12(4):530. doi: 10.3390/cells12040530.
9

本文引用的文献

1
Binding of kinetically inert metal ions to RNA: the case of platinum(II).
Met Ions Life Sci. 2011;9:347-77. doi: 10.1039/9781849732512-00347.
2
mRNA stability and control of cell proliferation.
Biochem Soc Trans. 2011 Oct;39(5):1461-5. doi: 10.1042/BST0391461.
3
tRNA biology charges to the front.
Genes Dev. 2010 Sep 1;24(17):1832-60. doi: 10.1101/gad.1956510.
4
SnapShot: key numbers in biology.
Cell. 2010 Jun 25;141(7):1262-1262.e1. doi: 10.1016/j.cell.2010.06.019.
5
Necrosis in yeast.
Apoptosis. 2010 Mar;15(3):257-68. doi: 10.1007/s10495-009-0453-4.
6
Oxidative damage to RNA: mechanisms, consequences, and diseases.
Cell Mol Life Sci. 2010 Jun;67(11):1817-29. doi: 10.1007/s00018-010-0277-y. Epub 2010 Feb 11.
7
Enzymatic processing of platinated RNAs.
J Am Chem Soc. 2010 Feb 17;132(6):1946-52. doi: 10.1021/ja908419j.
8
Apoptosis in yeast: triggers, pathways, subroutines.
Cell Death Differ. 2010 May;17(5):763-73. doi: 10.1038/cdd.2009.219. Epub 2010 Jan 15.
9
Ricin A-chain requires c-Jun N-terminal kinase to induce apoptosis in nontransformed epithelial cells.
Int J Biochem Cell Biol. 2009 Dec;41(12):2503-10. doi: 10.1016/j.biocel.2009.08.007. Epub 2009 Aug 18.
10
The centrality of RNA.
Cell. 2009 Feb 20;136(4):577-80. doi: 10.1016/j.cell.2009.02.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验