Suppr超能文献

化学介导的花粉管细胞壁机械扩张。

Chemically mediated mechanical expansion of the pollen tube cell wall.

机构信息

Department of Physics, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2011 Oct 19;101(8):1844-53. doi: 10.1016/j.bpj.2011.08.016.

Abstract

Morphogenesis of plant cells is tantamount to the shaping of the stiff cell wall that surrounds them. To this end, these cells integrate two concomitant processes: 1), deposition of new material into the existing wall, and 2), mechanical deformation of this material by the turgor pressure. However, due to uncertainty regarding the mechanisms that coordinate these processes, existing models typically adopt a limiting case in which either one or the other dictates morphogenesis. In this report, we formulate a simple mechanism in pollen tubes by which deposition causes turnover of cell wall cross-links, thereby facilitating mechanical deformation. Accordingly, deposition and mechanics are coupled and are both integral aspects of the morphogenetic process. Among the key experimental qualifications of this model are: its ability to precisely reproduce the morphologies of pollen tubes; its prediction of the growth oscillations exhibited by rapidly growing pollen tubes; and its prediction of the observed phase relationships between variables such as wall thickness, cell morphology, and growth rate within oscillatory cells. In short, the model captures the rich phenomenology of pollen tube morphogenesis and has implications for other plant cell types.

摘要

植物细胞的形态发生等同于对包围它们的坚硬细胞壁的塑造。为此,这些细胞整合了两个伴随的过程:1)将新材料沉积到现有壁中,以及 2)通过膨压使该材料发生机械变形。然而,由于对协调这些过程的机制的不确定性,现有模型通常采用一种限制情况,即一个或另一个决定形态发生。在本报告中,我们通过花粉管中一种简单的机制来表述这一点,即沉积导致细胞壁交联的周转,从而促进机械变形。因此,沉积和力学是耦合的,并且都是形态发生过程的整体方面。该模型的关键实验限定条件包括:它能够精确复制花粉管的形态;它预测了快速生长的花粉管表现出的生长振荡;以及它预测了观察到的变量之间的相位关系,如振荡细胞中的细胞壁厚度、细胞形态和生长速率。简而言之,该模型捕捉到花粉管形态发生的丰富现象学,并且对其他植物细胞类型具有影响。

相似文献

1
Chemically mediated mechanical expansion of the pollen tube cell wall.
Biophys J. 2011 Oct 19;101(8):1844-53. doi: 10.1016/j.bpj.2011.08.016.
2
Persistent symmetry frustration in pollen tubes.
PLoS One. 2012;7(11):e48087. doi: 10.1371/journal.pone.0048087. Epub 2012 Nov 5.
3
How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry.
Sex Plant Reprod. 2010 Mar;23(1):63-71. doi: 10.1007/s00497-009-0121-4. Epub 2009 Nov 18.
4
Probing the micromechanics of the fastest growing plant cell - the pollen tube.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:461-464. doi: 10.1109/EMBC.2016.7590739.
5
Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties.
Dev Biol. 2009 Oct 15;334(2):437-46. doi: 10.1016/j.ydbio.2009.07.044. Epub 2009 Aug 8.
6
Simultaneous measurement of turgor pressure and cell wall elasticity in growing pollen tubes.
Methods Cell Biol. 2020;160:297-310. doi: 10.1016/bs.mcb.2020.04.002. Epub 2020 May 20.
7
The pollen tube: a soft shell with a hard core.
Plant J. 2013 Feb;73(4):617-27. doi: 10.1111/tpj.12061. Epub 2012 Dec 10.
8
Shape and dynamics of tip-growing cells.
Curr Biol. 2009 Dec 29;19(24):2102-7. doi: 10.1016/j.cub.2009.10.075.
9
Finite element model of polar growth in pollen tubes.
Plant Cell. 2010 Aug;22(8):2579-93. doi: 10.1105/tpc.110.075754. Epub 2010 Aug 10.
10
Sucrose synthase is associated with the cell wall of tobacco pollen tubes.
Plant Physiol. 2008 Aug;147(4):1603-18. doi: 10.1104/pp.108.115956. Epub 2008 Mar 14.

引用本文的文献

1
The "weaken-fill-repair" model for cell budding: Linking cell wall biosynthesis with mechanics.
iScience. 2024 Sep 18;27(10):110981. doi: 10.1016/j.isci.2024.110981. eCollection 2024 Oct 18.
2
Assessing the hydromechanical control of plant growth.
J R Soc Interface. 2024 May;21(214):20240008. doi: 10.1098/rsif.2024.0008. Epub 2024 May 8.
3
Rapid alkalinization factor 22 has a structural and signalling role in root hair cell wall assembly.
Nat Plants. 2024 Mar;10(3):494-511. doi: 10.1038/s41477-024-01637-8. Epub 2024 Mar 11.
4
Cell wall dynamics stabilize tip growth in a filamentous fungus.
PLoS Biol. 2023 Jan 17;21(1):e3001981. doi: 10.1371/journal.pbio.3001981. eCollection 2023 Jan.
5
Building an extensible cell wall.
Plant Physiol. 2022 Jun 27;189(3):1246-1277. doi: 10.1093/plphys/kiac184.
6
Insights into the Mechanisms of Heat Priming and Thermotolerance in Tobacco Pollen.
Int J Mol Sci. 2021 Aug 8;22(16):8535. doi: 10.3390/ijms22168535.
7
Apical pollen tube wall curvature correlates with growth and indicates localized changes in the yielding of the cell wall.
Protoplasma. 2021 Nov;258(6):1347-1358. doi: 10.1007/s00709-021-01694-2. Epub 2021 Aug 19.
8
Quantitative cell biology of tip growth in moss.
Plant Mol Biol. 2021 Nov;107(4-5):227-244. doi: 10.1007/s11103-021-01147-7. Epub 2021 Apr 6.
9
Coordinating cell polarization and morphogenesis through mechanical feedback.
PLoS Comput Biol. 2021 Jan 28;17(1):e1007971. doi: 10.1371/journal.pcbi.1007971. eCollection 2021 Jan.
10
Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models.
Cell Surf. 2018 Apr 13;1:34-42. doi: 10.1016/j.tcsw.2018.04.001. eCollection 2018 Mar.

本文引用的文献

1
Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth.
PLoS One. 2011 Apr 25;6(4):e18549. doi: 10.1371/journal.pone.0018549.
2
A compartmental model analysis of integrative and self-regulatory ion dynamics in pollen tube growth.
PLoS One. 2010 Oct 6;5(10):e13157. doi: 10.1371/journal.pone.0013157.
3
A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16390-5. doi: 10.1073/pnas.1008527107. Epub 2010 Aug 30.
4
Finite element model of polar growth in pollen tubes.
Plant Cell. 2010 Aug;22(8):2579-93. doi: 10.1105/tpc.110.075754. Epub 2010 Aug 10.
5
Shape and dynamics of tip-growing cells.
Curr Biol. 2009 Dec 29;19(24):2102-7. doi: 10.1016/j.cub.2009.10.075.
6
Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):22002-7. doi: 10.1073/pnas.0910811106. Epub 2009 Dec 1.
7
Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes.
Plant Cell. 2009 Oct;21(10):3026-40. doi: 10.1105/tpc.109.069260. Epub 2009 Oct 27.
8
Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes.
Biophys J. 2009 Oct 7;97(7):1822-31. doi: 10.1016/j.bpj.2009.07.038.
9
Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties.
Dev Biol. 2009 Oct 15;334(2):437-46. doi: 10.1016/j.ydbio.2009.07.044. Epub 2009 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验