Suppr超能文献

分析人类胃中的起搏器活动。

Analysis of pacemaker activity in the human stomach.

机构信息

Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.

出版信息

J Physiol. 2011 Dec 15;589(Pt 24):6105-18. doi: 10.1113/jphysiol.2011.217497. Epub 2011 Oct 17.

Abstract

Extracellular electrical recording and studies using animal models have helped establish important concepts of human gastric physiology. Accepted standards include electrical quiescence in the fundus, 3 cycles per minute (cpm) pacemaker activity in corpus and antrum, and a proximal-to-distal slow wave frequency gradient. We investigated slow wave pacemaker activity, contractions and distribution of interstitial cells of Cajal (ICC) in human gastric muscles. Muscles were obtained from patients undergoing gastric resection for cancer, and the anatomical locations of each specimen were mapped by the operating surgeon to 16 standardized regions of the stomach. Electrical slow waves were recorded with intracellular microelectrodes and contractions were recorded by isometric force techniques. Slow waves were routinely recorded from gastric fundus muscles. These events had similar waveforms as slow waves in more distal regions and were coupled to phasic contractions. Gastric slow wave frequency was significantly greater than 3 cpm in all regions of the stomach. Antral slow wave frequency often exceeded the highest frequency of pacemaker activity in the corpus. Chronotropic mechanisms such as muscarinic and prostaglandin receptor binding, stretch, extracelluar Ca(2+) and temperature were unable to explain the observed slow wave frequency that exceeded accepted normal levels. Muscles from all regions through the thickness of the muscularis demonstrated intrinsic pacemaker activity, and this corresponded with the widespread distribution in ICC we mapped throughout the tunica muscularis. Our findings suggest that extracellular electrical recording has underestimated human slow wave frequency and mechanisms of human gastric function may differ from standard laboratory animal models.

摘要

细胞外电记录和动物模型研究有助于建立人类胃生理学的重要概念。公认的标准包括胃底的电静止、体部和胃窦每分钟 3 个周期(cpm)的起搏活动以及从近端到远端的慢波频率梯度。我们研究了人类胃肌中的慢波起搏活动、收缩和 Cajal 间质细胞(ICC)的分布。肌肉取自因癌症而行胃切除术的患者,手术医生将每个标本的解剖位置映射到胃的 16 个标准区域。通过细胞内微电极记录慢波,通过等长力技术记录收缩。从胃底肌肉常规记录慢波。这些事件具有与更远端区域的慢波相似的波形,并与相伴随的收缩偶联。胃的慢波频率在胃的所有区域均显著大于 3 cpm。胃窦的慢波频率通常超过体部起搏活动的最高频率。拟胆碱能和前列腺素受体结合、拉伸、细胞外 Ca(2+)和温度等变时机制无法解释观察到的超过可接受正常水平的慢波频率。从肌肉层的所有区域穿过肌层都表现出固有起搏活动,这与我们在整个肌层中映射到的 ICC 的广泛分布相对应。我们的发现表明,细胞外电记录低估了人类慢波频率,人类胃功能的机制可能与标准的实验室动物模型不同。

相似文献

1
Analysis of pacemaker activity in the human stomach.
J Physiol. 2011 Dec 15;589(Pt 24):6105-18. doi: 10.1113/jphysiol.2011.217497. Epub 2011 Oct 17.
2
Prostaglandin regulation of gastric slow waves and peristalsis.
Am J Physiol Gastrointest Liver Physiol. 2009 Jun;296(6):G1180-90. doi: 10.1152/ajpgi.90724.2008. Epub 2009 Apr 9.
3
Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum.
J Physiol. 2001 Nov 15;537(Pt 1):237-50. doi: 10.1111/j.1469-7793.2001.0237k.x.
4
Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal.
J Physiol. 2003 Jan 15;546(Pt 2):415-25. doi: 10.1113/jphysiol.2002.028977.
5
Mapping the rat gastric slow-wave conduction pathway: bridging in vitro and in vivo methods, revealing a loosely coupled region in the distal stomach.
Am J Physiol Gastrointest Liver Physiol. 2024 Aug 1;327(2):G254-G266. doi: 10.1152/ajpgi.00069.2024. Epub 2024 Jun 11.
6
Three-dimensional multi-field modelling of gastric arrhythmias and their effects on antral contractions.
Comput Biol Med. 2023 Feb;153:106488. doi: 10.1016/j.compbiomed.2022.106488. Epub 2022 Dec 30.
8
Generation and propagation of gastric slow waves.
Clin Exp Pharmacol Physiol. 2010 Apr;37(4):516-24. doi: 10.1111/j.1440-1681.2009.05331.x. Epub 2009 Nov 23.
9
Interstitial cells of cajal generate electrical slow waves in the murine stomach.
J Physiol. 1999 Jul 1;518(Pt 1):257-69. doi: 10.1111/j.1469-7793.1999.0257r.x.
10
Electrical events underlying organized myogenic contractions of the guinea pig stomach.
J Physiol. 2006 Nov 1;576(Pt 3):659-65. doi: 10.1113/jphysiol.2006.116491. Epub 2006 Jul 27.

引用本文的文献

1
Pyloric Dysfunction: A Review of the Mechanisms, Diagnosis, and Treatment.
Gut Liver. 2025 May 15;19(3):327-345. doi: 10.5009/gnl240421. Epub 2025 Mar 10.
2
Electrogastrography measurement systems and analysis methods used in clinical practice and research: comprehensive review.
Front Med (Lausanne). 2024 Jul 1;11:1369753. doi: 10.3389/fmed.2024.1369753. eCollection 2024.
3
Surface mapping of gastric motor functions using MRI: a comparative study between humans and rats.
Am J Physiol Gastrointest Liver Physiol. 2024 Sep 1;327(3):G345-G359. doi: 10.1152/ajpgi.00045.2024. Epub 2024 Jun 25.
4
Isoflurane anesthesia suppresses gastric myoelectric power in the ferret.
Neurogastroenterol Motil. 2024 Mar;36(3):e14749. doi: 10.1111/nmo.14749. Epub 2024 Feb 5.
6
Characterization of neuromuscular transmission and projections of muscle motor neurons in the rat stomach.
Am J Physiol Gastrointest Liver Physiol. 2024 Jan 1;326(1):G78-G93. doi: 10.1152/ajpgi.00194.2023. Epub 2023 Nov 21.
7
Mfge8 is expressed by pericytes in gastric antrum submucosa from patients with obesity.
Am J Physiol Cell Physiol. 2023 May 1;324(5):C992-C1006. doi: 10.1152/ajpcell.00043.2023. Epub 2023 Mar 20.
8
Is the Quantification of Interstitial Cells of Cajal in Gastric Biopsy Samples in Patients With Gastroparesis Ready for Prime Time?
Gastroenterology. 2023 Jul;165(1):1-4. doi: 10.1053/j.gastro.2023.03.204. Epub 2023 Mar 16.

本文引用的文献

1
Movement based artifacts may contaminate extracellular electrical recordings from GI muscles.
Neurogastroenterol Motil. 2011 Nov;23(11):1029-42, e498. doi: 10.1111/j.1365-2982.2011.01784.x. Epub 2011 Sep 25.
2
Regional Distribution of Interstitial Cells of Cajal (ICC) in Human Stomach.
Korean J Physiol Pharmacol. 2010 Oct;14(5):317-24. doi: 10.4196/kjpp.2010.14.5.317. Epub 2010 Oct 31.
3
Regional differences of the effects of acetylcholine in the human gastric circular muscle.
Am J Physiol Gastrointest Liver Physiol. 2010 Nov;299(5):G1198-203. doi: 10.1152/ajpgi.00523.2009. Epub 2010 Aug 26.
4
Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
Am J Physiol Gastrointest Liver Physiol. 2010 Sep;299(3):G585-92. doi: 10.1152/ajpgi.00125.2010. Epub 2010 Jul 1.
5
A Ca(2+)-activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity.
J Physiol. 2009 Oct 15;587(Pt 20):4905-18. doi: 10.1113/jphysiol.2009.176206. Epub 2009 Aug 24.
6
Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles.
J Physiol. 2009 Oct 15;587(Pt 20):4887-904. doi: 10.1113/jphysiol.2009.176198. Epub 2009 Aug 17.
7
Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract.
Am J Physiol Gastrointest Liver Physiol. 2009 Jun;296(6):G1370-81. doi: 10.1152/ajpgi.00074.2009. Epub 2009 Apr 16.
8
Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
Am J Physiol Gastrointest Liver Physiol. 2009 Jun;296(6):G1200-10. doi: 10.1152/ajpgi.90581.2008. Epub 2009 Apr 9.
9
Prostaglandin regulation of gastric slow waves and peristalsis.
Am J Physiol Gastrointest Liver Physiol. 2009 Jun;296(6):G1180-90. doi: 10.1152/ajpgi.90724.2008. Epub 2009 Apr 9.
10
Every slow-wave impulse is associated with motor activity of the human stomach.
Am J Physiol Gastrointest Liver Physiol. 2009 Apr;296(4):G709-16. doi: 10.1152/ajpgi.90318.2008. Epub 2008 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验