Biomicrofluidics. 2011 Sep;5(3):32005-3200515. doi: 10.1063/1.3608135. Epub 2011 Sep 20.
Microfluidic diagnostic devices promise faster disease identification by purifying and concentrating low-abundance analytes from a flowing sample. The diagnosis of sepsis, a whole body inflammatory response often caused by microbial infections of the blood, is a model system for pursuing the advantages of microfluidic devices over traditional diagnostic protocols. Traditional sepsis diagnoses require large blood samples and several days to culture and identify the low concentration microbial agent. During these long delays while culturing, the physician has little or no actionable information to treat this acute illness. We designed a microfluidic chip using dielectrophoresis to sort and concentrate the target microbe from a flowing blood sample. This design was optimized using the applicable electrokinetic and hydrodynamic theories. We quantify the sorting efficiency of this device using growth-based assays which show 30% of injected microbes are recovered viable, consistent with the electroporation of target cells by the dielectrophoretic cell sorters. Finally, the results illustrate the device is capable of a five-fold larger microbe concentration in the target analyte stream compared to the waste stream at a continuous sample flow rate of 35 μl∕h.
微流控诊断设备有望通过从流动样品中纯化和浓缩低丰度分析物来更快地识别疾病。败血症(一种全身性炎症反应,通常由血液中的微生物感染引起)的诊断是一个模型系统,用于探索微流控设备相对于传统诊断方案的优势。传统的败血症诊断需要大量血液样本,并需要数天时间来培养和鉴定低浓度的微生物。在培养过程中长时间延迟的情况下,医生几乎没有或没有可采取行动的信息来治疗这种急性疾病。我们使用介电泳设计了一种微流控芯片,从流动的血液样本中对目标微生物进行分类和浓缩。该设计使用适用的电动和流体动力学理论进行了优化。我们使用基于生长的测定法来量化该设备的分类效率,该测定法表明,注入的微生物中有 30%是可存活的,这与介电泳细胞分选器对靶细胞的电穿孔一致。最后,结果表明,与废物流相比,该设备在 35 μl∕h 的连续样品流速下,能够将目标分析物流中的微生物浓度提高五倍。