Suppr超能文献

用于从血细胞中连续分选大肠杆菌的介电泳微流控装置。

Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells.

出版信息

Biomicrofluidics. 2011 Sep;5(3):32005-3200515. doi: 10.1063/1.3608135. Epub 2011 Sep 20.

Abstract

Microfluidic diagnostic devices promise faster disease identification by purifying and concentrating low-abundance analytes from a flowing sample. The diagnosis of sepsis, a whole body inflammatory response often caused by microbial infections of the blood, is a model system for pursuing the advantages of microfluidic devices over traditional diagnostic protocols. Traditional sepsis diagnoses require large blood samples and several days to culture and identify the low concentration microbial agent. During these long delays while culturing, the physician has little or no actionable information to treat this acute illness. We designed a microfluidic chip using dielectrophoresis to sort and concentrate the target microbe from a flowing blood sample. This design was optimized using the applicable electrokinetic and hydrodynamic theories. We quantify the sorting efficiency of this device using growth-based assays which show 30% of injected microbes are recovered viable, consistent with the electroporation of target cells by the dielectrophoretic cell sorters. Finally, the results illustrate the device is capable of a five-fold larger microbe concentration in the target analyte stream compared to the waste stream at a continuous sample flow rate of 35 μl∕h.

摘要

微流控诊断设备有望通过从流动样品中纯化和浓缩低丰度分析物来更快地识别疾病。败血症(一种全身性炎症反应,通常由血液中的微生物感染引起)的诊断是一个模型系统,用于探索微流控设备相对于传统诊断方案的优势。传统的败血症诊断需要大量血液样本,并需要数天时间来培养和鉴定低浓度的微生物。在培养过程中长时间延迟的情况下,医生几乎没有或没有可采取行动的信息来治疗这种急性疾病。我们使用介电泳设计了一种微流控芯片,从流动的血液样本中对目标微生物进行分类和浓缩。该设计使用适用的电动和流体动力学理论进行了优化。我们使用基于生长的测定法来量化该设备的分类效率,该测定法表明,注入的微生物中有 30%是可存活的,这与介电泳细胞分选器对靶细胞的电穿孔一致。最后,结果表明,与废物流相比,该设备在 35 μl∕h 的连续样品流速下,能够将目标分析物流中的微生物浓度提高五倍。

相似文献

1
Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells.
Biomicrofluidics. 2011 Sep;5(3):32005-3200515. doi: 10.1063/1.3608135. Epub 2011 Sep 20.
2
Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity.
Lab Chip. 2011 Sep 7;11(17):2893-900. doi: 10.1039/c1lc20307j. Epub 2011 Jul 21.
3
High-throughput continuous dielectrophoretic separation of neural stem cells.
Biomicrofluidics. 2019 Nov 13;13(6):064111. doi: 10.1063/1.5128797. eCollection 2019 Nov.
4
Flow-through cell electroporation microchip integrating dielectrophoretic viable cell sorting.
Anal Chem. 2014 Oct 21;86(20):10215-22. doi: 10.1021/ac502294e. Epub 2014 Oct 6.
5
Microfluidic dielectrophoretic sorter using gel vertical electrodes.
Biomicrofluidics. 2014 May 23;8(3):034105. doi: 10.1063/1.4880244. eCollection 2014 May.
7
Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization.
Bioprocess Biosyst Eng. 2020 Sep;43(9):1573-1586. doi: 10.1007/s00449-020-02349-x. Epub 2020 Apr 23.
9
Combined dielectrophoretic and impedance system for on-chip controlled bacteria concentration: Application to Escherichia coli.
Electrophoresis. 2015 May;36(9-10):1130-41. doi: 10.1002/elps.201400446. Epub 2015 Apr 27.

引用本文的文献

1
Effects of Shear and Extensional Stresses on Cells: Investigation in a Spiral Microchannel and Contraction-Expansion Arrays.
ACS Biomater Sci Eng. 2025 Jun 9;11(6):3249-3261. doi: 10.1021/acsbiomaterials.5c00555. Epub 2025 May 28.
2
Purification of pluripotent embryonic stem cells using dielectrophoresis and a flow control system.
Eng Life Sci. 2022 Apr 15;22(5):417-426. doi: 10.1002/elsc.202100113. eCollection 2022 May.
4
Fluid-Screen as a real time dielectrophoretic method for universal microbial capture.
Sci Rep. 2021 Nov 15;11(1):22222. doi: 10.1038/s41598-021-01600-z.
5
Towards Microfluidic-Based Exosome Isolation and Detection for Tumor Therapy.
Nano Today. 2021 Apr;37. doi: 10.1016/j.nantod.2020.101066. Epub 2021 Jan 13.
6
Continuous ES/Feeder Cell-Sorting Device Using Dielectrophoresis and Controlled Fluid Flow.
Micromachines (Basel). 2020 Jul 29;11(8):734. doi: 10.3390/mi11080734.
7
High-throughput continuous dielectrophoretic separation of neural stem cells.
Biomicrofluidics. 2019 Nov 13;13(6):064111. doi: 10.1063/1.5128797. eCollection 2019 Nov.
8
Impacts of low concentration surfactant on red blood cell dielectrophoretic responses.
Biomicrofluidics. 2019 Sep 16;13(5):054101. doi: 10.1063/1.5113735. eCollection 2019 Sep.
9
Microfluidics-Based Organism Isolation from Whole Blood: An Emerging Tool for Bloodstream Infection Diagnosis.
Ann Biomed Eng. 2019 Jul;47(7):1657-1674. doi: 10.1007/s10439-019-02256-7. Epub 2019 Apr 12.

本文引用的文献

2
Isolation of rare circulating tumour cells in cancer patients by microchip technology.
Nature. 2007 Dec 20;450(7173):1235-9. doi: 10.1038/nature06385.
3
Bacteroides: the good, the bad, and the nitty-gritty.
Clin Microbiol Rev. 2007 Oct;20(4):593-621. doi: 10.1128/CMR.00008-07.
4
Management of sepsis.
N Engl J Med. 2006 Oct 19;355(16):1699-713. doi: 10.1056/NEJMra043632.
5
Dielectric properties of E. coli cell as simulated by the three-shell spheroidal model.
Biophys Chem. 2006 Jul 20;122(2):136-42. doi: 10.1016/j.bpc.2006.03.004. Epub 2006 Mar 16.
6
Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
Lab Chip. 2005 Oct;5(10):1161-7. doi: 10.1039/b505088j. Epub 2005 Aug 2.
7
Continuous flow microfluidic device for rapid erythrocyte lysis.
Anal Chem. 2004 Nov 1;76(21):6247-53. doi: 10.1021/ac049429p.
8
Analytical description of transmembrane voltage induced by electric fields on spheroidal cells.
Biophys J. 2000 Aug;79(2):670-9. doi: 10.1016/S0006-3495(00)76325-9.
9
Cell separation by dielectrophoretic field-flow-fractionation.
Anal Chem. 2000 Feb 15;72(4):832-9. doi: 10.1021/ac990922o.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验