Department of Chemistry, University of Rochester, New York 14627, USA.
J Am Chem Soc. 2011 Nov 30;133(47):19240-9. doi: 10.1021/ja2085806. Epub 2011 Nov 7.
Following recent experiments [Science 2010, 328, 1543; PNAS 2011, 108, 965], we report an ab initio nonadiabatic molecular dynamics (NAMD) simulation of the ultrafast photoinduced electron transfer (ET) from a PbSe quantum dot (QD) into the rutile TiO(2) (110) surface. The system forms the basis for QD-sensitized semiconductor solar cells and demonstrates that ultrafast interfacial ET is instrumental for achieving high efficiencies in solar-to-electrical energy conversion. The simulation supports the observation that the ET successfully competes with energy losses due to electron-phonon relaxation. The ET proceeds by the adiabatic mechanism because of strong donor-acceptor coupling. High frequency polar vibrations of both QD and TiO(2) promote the ET, since these modes can rapidly influence the donor-acceptor state energies and coupling. Low frequency vibrations generate a distribution of initial conditions for ET, which shows a broad variety of scenarios at the single-molecule level. Compared to the molecule-TiO(2) interfaces, the QD-TiO(2) system exhibits pronounced differences that arise due to the larger size and higher rigidity of QDs relative to molecules. Both donor and acceptor states are more delocalized in the QD system, and the ET is promoted by optical phonons, which have relatively low frequencies in the QD materials composed of heavy elements. In contrast, in molecular systems, optical phonons are not thermally accessible under ambient conditions. Meanwhile, TiO(2) acceptor states resemble surface impurities due to the local influence of molecular chromophores. At the same time, the photoinduced ET at both QD-TiO(2) and molecule-TiO(2) interfaces is ultrafast and occurs by the adiabatic mechanism, as a result of strong donor-acceptor coupling. The reported state-of-the-art simulation generates a detailed time-domain atomistic description of the interfacial ET process that is fundamental to a wide variety of applications.
在最近的实验之后[Science 2010, 328, 1543; PNAS 2011, 108, 965],我们报告了一个从头算非绝热分子动力学(NAMD)模拟,该模拟研究了从 PbSe 量子点(QD)到锐钛矿 TiO(2)(110)表面的超快光致电子转移(ET)。该系统是 QD 敏化半导体太阳能电池的基础,并证明超快界面 ET 对于实现太阳能到电能的高效转换至关重要。该模拟支持了这样一种观点,即 ET 成功地与电子-声子弛豫引起的能量损失竞争。由于施主-受主耦合很强,ET 是通过绝热机制进行的。QD 和 TiO(2) 的高频极化振动促进了 ET,因为这些模式可以快速影响施主-受主态能量和耦合。低频振动产生了 ET 的初始条件分布,在单分子水平上显示了多种情况。与分子-TiO(2)界面相比,QD-TiO(2)系统表现出显著的差异,这是由于 QD 相对于分子的尺寸较大且刚性较高所致。在 QD 系统中,供体和受体态都更加离域,并且 ET 是由光学声子促进的,光学声子在由重元素组成的 QD 材料中的频率相对较低。相比之下,在分子系统中,光学声子在环境条件下无法热激发。同时,由于分子发色团的局部影响,TiO(2)的受体态类似于表面杂质。与此同时,QD-TiO(2)和分子-TiO(2)界面上的光致 ET 都是超快的,并且通过绝热机制发生,这是由于施主-受主耦合很强。所报道的最先进的模拟生成了界面 ET 过程的详细时域原子描述,这对各种应用都至关重要。