Department of Chemistry, Kyoto University, Kyoto, 606-8502, Japan.
Dalton Trans. 2009 Dec 7(45):10069-77. doi: 10.1039/b909267f. Epub 2009 Aug 27.
State-of-the-art time domain density functional theory and non-adiabatic (NA) molecular dynamic simulations are used to study phonon-induced relaxation of photoexcited electrons and holes in Ge and Si quantum dots (QDs). The relaxation competes with productive processes and causes energy and voltage losses in QD solar cells. The ab initio calculations show that quantum confinement makes the electron and hole density of states (DOS) more symmetric in Si and Ge QDs compared to bulk. Surprisingly, in spite of the symmetric DOS, the electron and hole relaxations are quite asymmetric: the electrons decay faster than the holes. The asymmetry arises due to stronger NA coupling in the conduction band (CB) than in the valence band (VB). The stronger NA coupling of the electrons compared to the holes is rationalized by the larger contribution of the high-frequency Ge-H and Si-H surface passivating bonds to the CB relative to the VB. Linear relationships between the electron and hole relaxation rates and the CB and VB DOS are found in agreement with Fermi's golden rule. The faster relaxation of the electrons compared to the holes in the Ge and Si QDs is unexpected and is in contrast with the corresponding dynamics in the majority of binary QDs, such as CdSe. It suggests that Auger processes will transfer energy from holes to electrons rather than in the opposite direction as in CdSe, and that a larger fraction of the photoexcitation energy will be transferred to phonons coupled with electrons rather than holes. The difference in the phonon-induced electron and hole decay rates is larger in Ge than Si, indicating that the Auger processes should be particularly important in Ge QDs. The simulations provide direct evidence that the high-frequency ligand modes on the QD surface play a pivotal role in the electron-phonon relaxation dynamics of semiconductor QDs.
采用最先进的时域密度泛函理论和非绝热(NA)分子动力学模拟研究了在 Ge 和 Si 量子点(QD)中光激发电子和空穴的声子诱导弛豫。这种弛豫与产生过程竞争,并导致 QD 太阳能电池中的能量和电压损失。从头算计算表明,与体材料相比,量子限制使 Si 和 Ge QD 中的电子和空穴态密度(DOS)更加对称。令人惊讶的是,尽管 DOS 对称,但电子和空穴弛豫却非常不对称:电子的衰减速度快于空穴。这种不对称性源于导带(CB)中的非绝热耦合比价带(VB)更强。与空穴相比,电子的非绝热耦合更强,可以通过高频 Ge-H 和 Si-H 表面钝化键对 CB 的贡献相对于 VB 来合理化。电子和空穴弛豫率与 CB 和 VB DOS 之间的线性关系与费米黄金定则一致。与大多数二元 QD(如 CdSe)相比,在 Ge 和 Si QD 中电子的弛豫速度比空穴快,这是出乎意料的。这表明俄歇过程将能量从空穴转移到电子,而不是像 CdSe 那样相反,并且更多的光激发能量将转移到与电子而非空穴耦合的声子上。在 Ge 中,电子和空穴衰减率之间的差异比在 Si 中更大,这表明俄歇过程在 Ge QD 中应该特别重要。这些模拟提供了直接证据,证明 QD 表面的高频配体模式在半导体 QD 的电子-声子弛豫动力学中起着关键作用。