Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, 1 Shields Avenue, Davis, CA 95616, USA.
Ann Biomed Eng. 2012 Apr;40(4):828-39. doi: 10.1007/s10439-011-0429-8. Epub 2011 Oct 19.
Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.
内皮细胞被一层超过 400nm 厚的富含多糖的层所覆盖,其力学性质限制了循环血浆成分与内皮细胞膜的接触。该内皮表面层的屏障特性是根据示踪剂渗透到该层的速率和红细胞和白细胞在毛细血管微脉管中运动的力学来推断的。本综述比较了内皮层(100-150nm,接近内皮膜)的机械感受器和通透性特性,该内皮层被描述为准周期性结构,解释了跨血管交换和血管通透性的关键方面,以及整个内皮表面层的特性。我们得出的结论是,整个表面层的许多屏障特性不能代表形成决定跨血管交换的分子过滤器的主要纤维基质。整个层的特性与内层糖萼结构之间的差异可能反映了内皮表面层的动态方面,包括示踪剂与特定成分的结合、关键成分的合成和降解、当表面层的成分丢失或降解时内皮细胞中信号通路的激活,以及粘附蛋白在细胞膜微域中的空间分布。