Rao Vadrevu Sree Hari, Kumar Mallenahalli Naresh
Department of Mathematics, Jawaharlal Nehru Technological University, Hyderabad, India.
IEEE Trans Inf Technol Biomed. 2012 Jan;16(1):112-8. doi: 10.1109/TITB.2011.2171978. Epub 2011 Oct 17.
Identification of the influential clinical symptoms and laboratory features that help in the diagnosis of dengue fever (DF) in early phase of the illness would aid in designing effective public health management and virological surveillance strategies. Keeping this as our main objective, we develop in this paper a new computational intelligence-based methodology that predicts the diagnosis in real time, minimizing the number of false positives and false negatives. Our methodology consists of three major components: 1) a novel missing value imputation procedure that can be applied on any dataset consisting of categorical (nominal) and/or numeric (real or integer); 2) a wrapper-based feature selection method with genetic search for extracting a subset of most influential symptoms that can diagnose the illness; and 3) an alternating decision tree method that employs boosting for generating highly accurate decision rules. The predictive models developed using our methodology are found to be more accurate than the state-of-the-art methodologies used in the diagnosis of the DF.
识别有助于在疾病早期诊断登革热(DF)的有影响力的临床症状和实验室特征,将有助于设计有效的公共卫生管理和病毒学监测策略。以此作为我们的主要目标,我们在本文中开发了一种基于计算智能的新方法,该方法可实时预测诊断结果,最大限度地减少假阳性和假阴性的数量。我们的方法由三个主要部分组成:1)一种新颖的缺失值插补程序,可应用于任何由分类(名义)和/或数值(实数或整数)组成的数据集;2)一种基于包装器的特征选择方法,通过遗传搜索来提取最有影响力的症状子集,以诊断疾病;3)一种交替决策树方法,采用提升算法生成高度准确的决策规则。使用我们的方法开发的预测模型比用于DF诊断的现有最先进方法更准确。