Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
J Phys Chem A. 2011 Nov 17;115(45):13001-6. doi: 10.1021/jp204558n. Epub 2011 Oct 19.
The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.
分子中的原子量子理论(QTAIM)被推广到包括相对论效应,使用流行的标量相对论零阶正则近似(SR-ZORA)。通常假设,将原子定义为电子密度的零通量面所包围的体积与动能的形式密切相关,因此令人有些惊讶的是,与 SR-ZORA 哈密顿量中的相对论动能算子相对应的原子也被零通量面所包围。SR-ZORA 哈密顿量应该足以对元素周期表中分子电子结构进行定性描述,这表明基于 QTAIM 的分析对于包含重原子的分子和固体可能是有用的。