School of Chemistry F11, The University of Sydney, NSW 2006 Australia.
Langmuir. 2011 Dec 6;27(23):14207-17. doi: 10.1021/la2029577. Epub 2011 Nov 9.
We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems.
我们研究了聚 N-乙烯基吡咯烷酮(PNVP)薄膜(45nm)在聚苯乙烯(PS)薄膜(58nm)上的去湿行为,作为退火温度和 PS 分子量(96 和 6850kg/mol)的函数。我们专注于 PNVP/PS 界面处不利的分子间相互作用导致的去湿与 PNVP 在热退火过程中自发交联之间的竞争,正如我们最近报道的那样(Telford,A.M.;James,M.;Meagher,L.;Neto,C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408)。使用光学显微镜,我们研究了在不同温度下,顶部 PNVP 薄膜的相对粘度(随交联时间增加而增加)和底部 PS 薄膜的相对粘度如何影响去湿形貌和动力学。在 PNVP/PS96K 体系中,交联在低于 180°C 的温度下主导了去湿过程,大大降低了核化孔的密度及其最大尺寸,而在 180°C 以上,这两个过程发生逆转,在 200°C 时完全去湿。另一方面,PNVP/PS6850K 体系从未达到过高级去湿阶段,因为在研究的温度范围内,去湿比交联慢。在这两个体系中,通过在交联占主导的温度下对双层膜进行热退火,可以完全避免 PNVP 薄膜的去湿。使用中子反射法对交联进行了定量分析,表明 PNVP 薄膜的收缩和致密化,并通过选择性去除底部 PS 薄膜进行了定性分析。一个简单的模型考虑了在去湿过程中交联的逐步进行,很好地预测了观察到的孔生长曲线,并产生了 PNVP 交联速率系数和过程活化能的估计值,与类似体系的文献值吻合较好。