Suppr超能文献

无需分类预测抗体互补决定区结构。

Predicting antibody complementarity determining region structures without classification.

作者信息

Choi Yoonjoo, Deane Charlotte M

机构信息

Department of Statistics, Oxford University, 1 South Parks Road, Oxford OX1 3TG, UK.

出版信息

Mol Biosyst. 2011 Dec;7(12):3327-34. doi: 10.1039/c1mb05223c. Epub 2011 Oct 20.

Abstract

Antibodies are used extensively in medical and biological research. Their complementarity determining regions (CDRs) define the majority of their antigen binding functionality. CDR structures have been intensively studied and classified (canonical structures). Here we show that CDR structure prediction is no different from the standard loop structure prediction problem and predict them without classification. FREAD, a successful database loop prediction technique, is able to produce accurate predictions for all CDR loops (0.81, 0.42, 0.96, 0.98, 0.88 and 2.25 Å RMSD for CDR-L1 to CDR-H3). In order to overcome the relatively poor predictions of CDR-H3, we developed two variants of FREAD, one focused on sequence similarity (FREAD-S) and another which includes contact information (ConFREAD). Both of the methods improve accuracy for CDR-H3 to 1.34 Å and 1.23 Å respectively. The FREAD variants are also tested on homology models and compared to RosettaAntibody (CDR-H3 prediction on models: 1.98 and 2.62 Å for ConFREAD and RosettaAntibody respectively). CDRs are known to change their structural conformations upon binding the antigen. Traditional CDR classifications are based on sequence similarity and do not account for such environment changes. Using a set of antigen-free and antigen-bound structures, we compared our FREAD variants. ConFREAD which includes contact information successfully discriminates the bound and unbound CDR structures and achieves an accuracy of 1.35 Å for bound structures of CDR-H3.

摘要

抗体在医学和生物学研究中被广泛应用。其互补决定区(CDR)决定了其大部分抗原结合功能。CDR结构已得到深入研究并分类(标准结构)。在此我们表明,CDR结构预测与标准环结构预测问题并无不同,且无需分类即可对其进行预测。FREAD是一种成功的数据库环预测技术,能够对所有CDR环做出准确预测(CDR-L1至CDR-H3的均方根偏差分别为0.81、0.42、0.96、0.98、0.88和2.25Å)。为了克服对CDR-H3相对较差的预测,我们开发了FREAD的两种变体,一种侧重于序列相似性(FREAD-S),另一种包含接触信息(ConFREAD)。这两种方法都将CDR-H3的预测准确性分别提高到了1.34Å和1.23Å。FREAD变体也在同源模型上进行了测试,并与RosettaAntibody进行了比较(在模型上对CDR-H3的预测:ConFREAD和RosettaAntibody分别为1.98和2.62Å)。已知CDR在结合抗原后会改变其结构构象。传统的CDR分类基于序列相似性,并未考虑此类环境变化。我们使用一组无抗原和结合抗原的结构,对FREAD变体进行了比较。包含接触信息的ConFREAD成功区分了结合和未结合的CDR结构,并且对于CDR-H3的结合结构实现了1.35Å的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验