Ueno Shoogo
Department of Biomedical Engineering, Graduate School of Medicine, the University of Tokyo, Japan.
Bioelectromagnetics. 2012 Jan;33(1):3-22. doi: 10.1002/bem.20714. Epub 2011 Oct 19.
Forty-five years of studies on magnetism and bioelectromagnetics, in our laboratory, are presented. This article is prepared for the d'Arsonval Award Lecture. After a short introduction of our early work on magnetic analog memory, we review and discuss the following topics: (1) Magnetic nerve stimulation and localized transcranial magnetic stimulation (TMS) of the human brain by figure-eight coils; (2) Measurements of weak magnetic fields generated from the brain by superconducting quantum interference device (SQUID) systems, called magnetoencephalography (MEG), and its application in functional brain studies; (3) New methods of magnetic resonance imaging (MRI) for the imaging of impedance of the brain, called impedance MRI, and the imaging of neuronal current activities in the brain, called current MRI; (4) Cancer therapy and other medical treatments by pulsed magnetic fields; (5) Effects of static magnetic fields and magnetic control of cell orientation and cell growth; and (6) Effects of radio frequency magnetic fields and control of iron ion release and uptake from and into ferritins, iron cage proteins. These bioelectromagnetic studies have opened new horizons in magnetism and medicine, in particular for brain research and treatment of ailments such as depression, Parkinson's, and Alzheimer's diseases.
本文介绍了我们实验室在磁性和生物电磁学领域长达45年的研究。本文是为达松瓦尔奖讲座而准备的。在简要介绍了我们早期关于磁模拟记忆的工作之后,我们回顾并讨论以下主题:(1)使用8字形线圈对人类大脑进行磁神经刺激和局部经颅磁刺激(TMS);(2)通过超导量子干涉装置(SQUID)系统测量大脑产生的弱磁场,即脑磁图(MEG),及其在脑功能研究中的应用;(3)用于大脑阻抗成像的磁共振成像(MRI)新方法,即阻抗MRI,以及用于大脑神经元电流活动成像的电流MRI;(4)脉冲磁场用于癌症治疗和其他医学治疗;(5)静磁场的作用以及对细胞取向和细胞生长的磁控制;(6)射频磁场的作用以及对铁离子从铁蛋白(铁笼蛋白)中释放和摄取的控制。这些生物电磁学研究为磁性和医学领域开辟了新的视野,特别是在脑研究以及抑郁症、帕金森病和阿尔茨海默病等疾病的治疗方面。