Paulson O B, Strandgaard S, Edvinsson L
Department of Neurology, Rigshospitalet, Copenhagen, Denmark.
Cerebrovasc Brain Metab Rev. 1990 Summer;2(2):161-92.
Autoregulation of blood flow denotes the intrinsic ability of an organ or a vascular bed to maintain a constant perfusion in the face of blood pressure changes. Alternatively, autoregulation can be defined in terms of vascular resistance changes or simply arteriolar caliber changes as blood pressure or perfusion pressure varies. While known in almost any vascular bed, autoregulation and its disturbance by disease has attracted particular attention in the cerebrovascular field. The basic mechanism of autoregulation of cerebral blood flow (CBF) is controversial. Most likely, the autoregulatory vessel caliber changes are mediated by an interplay between myogenic and metabolic mechanisms. Influence of perivascular nerves and most recently the vascular endothelium has also been the subject of intense investigation. CBF autoregulation typically operates between mean blood pressures of the order of 60 and 150 mm Hg. These limits are not entirely fixed but can be modulated by sympathetic nervous activity, the vascular renin-angiotensin system, and any factor (notably changes in arterial carbon dioxide tension) that decreases or increases CBF. Disease states of the brain may impair or abolish CBF autoregulation. Thus, autoregulation is lost in severe head injury or acute ischemic stroke, leaving surviving brain tissue unprotected against the potentially harmful effect of blood pressure changes. Likewise, autoregulation may be lost in the surroundings of a space-occupying brain lesion, be it a tumor or a hematoma. In many such disease states, autoregulation may be regained by hyperventilatory hypocapnia. Autoregulation may also be impaired in neonatal brain asphyxia and infections of the central nervous system, but appears to be intact in spreading depression and migraine, despite impairment of chemical and metabolic control of CBF. In chronic hypertension, the limits of autoregulation are shifted toward high blood pressure. Acute hypertensive encephalopathy, on the other hand, is thought to be due to autoregulatory failure at very high pressure. In long-term diabetes mellitus there may be chronic impairment of CBF autoregulation, probably due to diabetic microangiopathy.
血流的自动调节是指器官或血管床在面对血压变化时维持恒定灌注的内在能力。或者,自动调节可以根据血管阻力变化来定义,或者简单地根据血压或灌注压力变化时小动脉口径的变化来定义。虽然几乎在任何血管床中都存在自动调节,但自动调节及其因疾病而受到的干扰在脑血管领域引起了特别关注。脑血流量(CBF)自动调节的基本机制存在争议。最有可能的是,自动调节的血管口径变化是由肌源性和代谢机制之间的相互作用介导的。血管周围神经以及最近血管内皮的影响也一直是深入研究的主题。CBF自动调节通常在平均血压约为60至150 mmHg之间起作用。这些界限并非完全固定不变,而是可以受到交感神经活动、血管肾素 - 血管紧张素系统以及任何降低或增加CBF的因素(特别是动脉二氧化碳张力的变化)的调节。脑部疾病状态可能会损害或消除CBF自动调节。因此,在严重的头部损伤或急性缺血性中风中,自动调节功能丧失,使存活的脑组织无法抵御血压变化的潜在有害影响。同样,在占位性脑病变(无论是肿瘤还是血肿)周围,自动调节功能可能会丧失。在许多这样的疾病状态下,过度通气性低碳酸血症可能会恢复自动调节功能。新生儿脑窒息和中枢神经系统感染时自动调节功能也可能受损,但在扩散性抑制和偏头痛中,尽管CBF的化学和代谢控制受到损害,但自动调节功能似乎完好无损。在慢性高血压中,自动调节的界限会向高血压方向偏移。另一方面,急性高血压脑病被认为是由于在非常高的压力下自动调节功能衰竭所致。在长期糖尿病中,CBF自动调节可能会出现慢性损害,可能是由于糖尿病微血管病变。